Synergistic and Competitive Effects between Zinc Dialkyldithiophosphates and Modern Generation of Additives in Engine Oil
Abstract
:1. Introduction
2. Experimental Preparation
2.1. Lubricant Preparation
2.2. Testing Methods
2.3. Characterization
3. Results
3.1. Frictional Test Results
3.1.1. Friction and Wear of PAO Oil with a Single Additive
3.1.2. Friction and Wear of PAO Oil with Mixed Additives
3.1.3. Summary of Tribological Results
3.2. Wear Track Morphology of Ball Counterpart
3.3. Compositional Analysis of the Ball Wear Surfaces
3.3.1. PAO Oil Tribotests with a Single Additive
3.3.2. PAO Oil Tribotests with Mixed Additives
4. Discussion
4.1. ZDDP and CPCa Combination
4.2. ZDDP and Ni Nanoparticles Combination
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macian, V.; Tormos, B.; Ruiz, S.; Miró, G. Low viscosity engine oils: Study of wear effects and oil key parameters in a heavy duty engine fleet test. Tribol. Int. 2016, 94, 240–248. [Google Scholar] [CrossRef]
- Ueda, M.; Kadiric, A.; Spikes, H. On the crystallinity and durability of ZDDP tribofilm. Tribol. Lett. 2019, 67, 123. [Google Scholar] [CrossRef] [Green Version]
- Spikes, H. The history and mechanisms of ZDDP. Tribol. Lett. 2004, 17, 469–489. [Google Scholar] [CrossRef]
- Martin, J.M. Antiwear mechanisms of zinc dithiophosphate: A chemical hardness approach. Tribol. Lett. 1999, 6, 1–8. [Google Scholar] [CrossRef]
- Nicholls, M.A.; Do, T.; Norton, P.R.; Kasrai, M.; Bancroft, G.M. Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 2005, 38, 15–39. [Google Scholar] [CrossRef]
- Spikes, H. Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubr. Sci. 2008, 20, 103–136. [Google Scholar] [CrossRef]
- Dawczyk, J.; Morgan, N.; Russo, J.; Spikes, H. Film thickness and friction of ZDDP tribofilms. Tribol. Lett. 2019, 67, 34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Spikes, H. On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 2016, 63, 24. [Google Scholar] [CrossRef] [Green Version]
- Elo, R.; Jacobson, S. Formation and breakdown of oil residue tribofilms protecting the valves of diesel engines. Wear 2015, 330, 193–198. [Google Scholar] [CrossRef]
- Wong, V.W.; Tung, S.C. Overview of automotive engine friction and reduction trends–Effects of surface, material, and lubricant-additive technologies. Friction 2016, 4, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, J. Superlubricity of carbon nanostructures. Carbon 2020, 158, 1–23. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. Appl. Phys. 2006, 39, R311. [Google Scholar] [CrossRef]
- Johnson, B.; Wu, H.; Desanker, M.; Pickens, D.; Chung, Y.-W.; Wang, Q.J. Direct formation of lubricious and wear-protective carbon films from phosphorus-and sulfur-free oil-soluble additives. Tribol. Lett. 2018, 66, 2. [Google Scholar] [CrossRef]
- Wu, H.; Khan, A.M.; Johnson, B.; Sasikumar, K.; Chung, Y.-W.; Wang, Q.J. Formation and Nature of Carbon-Containing Tribofilms. ACS Appl. Mater. Interfaces. 2019, 11, 16139–16146. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M.; Wu, H.; Ma, Q.; Chung, Y.-W.; Wang, Q.J. Relating Tribological Performance and Tribofilm Formation to the Adsorption Strength of Surface-Active Precursors. Tribol. Lett. 2020, 68, 6. [Google Scholar] [CrossRef]
- Haque, T.; Morina, A.; Neville, A.; Kapadia, R.; Arrawsmith, S. Study of the ZDDP antiwear tribofilm formed on the DLC coating using AFM and XPS techniques. In Automotive Lubricant Testing and Advanced Additive Development; ASTM International: New York, NY, USA, 2008. [Google Scholar]
- Topolovec-Miklozic, K.; Lockwood, F.; Spikes, H. Behaviour of boundary lubricating additives on DLC coatings. Wear 2008, 265, 1893–1901. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of nanoparticles in oil lubrication. Tribol. Int. 2016, 102, 88–98. [Google Scholar] [CrossRef]
- Lee, K.; Hwang, Y.; Cheong, S.; Choi, Y.; Kwon, L.; Lee, J.; Kim, S.H. Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett. 2009, 35, 127–131. [Google Scholar] [CrossRef]
- Spikes, H. Friction modifier additives. Tribol. Lett. 2015, 60, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hu, L.; Feng, D.; Wang, H. Anti-wear and friction-reduction mechanism of Sn and Fe nanoparticles as additives of multialkylated cyclopentanes under vacuum condition. Vacuum 2013, 87, 75–80. [Google Scholar] [CrossRef]
- Padgurskas, J.; Rukuiza, R.; Prosyčevas, I.; Kreivaitis, R. Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol. Int. 2013, 60, 224–232. [Google Scholar] [CrossRef]
- Kotnarowski, A. Tribological properties of oils modified with the addition of metal nanoparticles. Solid State Phenom. 2006, 113, 393–398. [Google Scholar] [CrossRef]
- Abad, M.; Sánchez-López, J. Tribological properties of surface-modified Pd nanoparticles for electrical contacts. Wear 2013, 297, 943–951. [Google Scholar] [CrossRef]
- Chou, R.; Battez, A.H.; Cabello, J.; Viesca, J.; Osorio, A.; Sagastume, A. Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribol. Int. 2010, 43, 2327–2332. [Google Scholar] [CrossRef]
- Pham, S.T.; Tieu, A.K.; Sencadas, V.; Lei, W.; Liu, D.; Wan, S.; Hao, J. Smart-Responsive Colloidal Capsules as an Emerging Tool to Design a Multifunctional Lubricant Additive. ACS Appl. Mater. Interfaces. 2021, 13, 7714–7724. [Google Scholar] [CrossRef]
- Pham, S.T.; Tieu, A.K.; Wan, S.; Hao, J.; Zhu, H.; Nguyen, H.H.; Mitchell, D.R. Oxidative and Frictional Behavior of a Binary Sodium Borate–Silicate Composite in High-Temperature Lubricant Applications. Ind. Eng. Chem. Res. 2019, 59, 2921–2933. [Google Scholar] [CrossRef]
- Pham, S.T.; Wan, S.; Tieu, K.A.; Ma, M.; Zhu, H.; Nguyen, H.H.; Mitchell, D.R.; Nancarrow, M.J. Unusual Competitive and Synergistic Effects of Graphite Nanoplates in Engine Oil on the Tribofilm Formation. Adv. Mater. Interfaces 2019, 6, 1901081. [Google Scholar] [CrossRef]
- Matsui, Y.; Aoki, S.; Masuko, M. Influence of coexisting functionalized polyalkylmethacrylates on the formation of ZnDTP-derived tribofilm. Tribol. Int. 2016, 100, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Brooks, R.; Shipway, P. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Convers. Manag. 2014, 82, 327–350. [Google Scholar] [CrossRef] [Green Version]
- Hamrock, B.J.; Dowson, D. Isothermal elastohydrodynamic lubrication of point contacts: Part III—fully flooded results. J. Lubr. Tech. 1977, 99, 264–275. [Google Scholar] [CrossRef]
- Mori, H.; Tachikawa, H. Increased adhesion of diamond-like carbon–Si coatings and its tribological properties. Surface Coat. Technol. 2002, 149, 224–229. [Google Scholar] [CrossRef]
- Wu, Y.; Tsui, W.; Liu, T. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, 262, 819–825. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y.; Yang, G.; Gao, C.; Song, N.; Zhang, S.; Zhang, P. In-situ formed carbon based composite tribo-film with ultra-high load bearing capacity. Tribol. Int. 2020, 152, 106577. [Google Scholar] [CrossRef]
- Hoffman, E.E.; Marks, L.D. Graphitic carbon films across systems. Tribol. Lett. 2016, 63, 32. [Google Scholar] [CrossRef]
- Soler, M.A.; Qu, F. Raman spectroscopy of iron oxide nanoparticles. In Raman Spectroscopy for Nanomaterials Characterization; Springer: Berlin/Heidelberg, Germany, 2012; pp. 379–416. [Google Scholar]
- Vengudusamy, B.; Green, J.H.; Lamb, G.D.; Spikes, H.A. Durability of ZDDP tribofilms formed in DLC/DLC contacts. Tribol. Lett. 2013, 51, 469–478. [Google Scholar] [CrossRef]
- Heuberger, R.; Rossi, A.; Spencer, N.D. XPS study of the influence of temperature on ZnDTP tribofilm composition. Tribol. Lett. 2007, 25, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Spikes, H.A. The influence of slide–roll ratio on ZDDP tribofilm formation. Tribol. Lett. 2016, 64, 19. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Spikes, H.A. The tribofilm formation of ZDDP under reciprocating pure sliding conditions. Tribol. Lett. 2016, 64, 46. [Google Scholar] [CrossRef] [Green Version]
Experimental Sample | Denoted | Concentration |
---|---|---|
Pure PAO oil | PAO | PAO |
PAO oil containing ZDDP | ZDDP | PAO + 2.5wt%ZDDP |
PAO oil containing CPCa | CPCa | PAO + 2.5wt%CPCa |
PAO oil containing Ni nanoparticles | Ni | PAO + 0.1wt%Ni |
PAO oil containing ZDDP and CPCa | ZDDP+CPCa | PAO + 1.25wt%ZDDP + 1.25wt%CPCa |
PAO oil containing ZDDP and Ni combination | ZDDP + Ni | PAO + 2.5wt%ZDDP + 0.1wt%Ni |
Experimental Sample | Steady-State Friction | Disc Wear Surface Roughness (µm) | Ball Wear Volume (10−4 mm3) | Ball Wear Surface Roughness (µm) |
---|---|---|---|---|
PAO | 0.143 ± 0.009 | 0.365 ± 0.052 | 3.130 ± 1.590 | 0.588 ± 0.488 |
ZDDP | 0.108 ± 0.011 | 0.295 ± 0.029 | 0.103 ± 0.023 | 0.130 ± 0.068 |
CPCa | 0.090 ± 0.004 | 0.395 ± 0.057 | 0.368 ± 0.043 | 0.170 ± 0.011 |
Ni | 0.103 ± 0.009 | 0.291 ± 0.083 | 0.049 ± 0.012 | 0.140 ± 0.031 |
ZDDP+Ni | 0.114 ± 0.006 | 0.264 ± 0.072 | 0.075 ± 0.014 | 0.148 ± 0.039 |
ZDDP+CPCa | 0.119 ± 0.008 | 0.350 ± 0.032 | 0.097 ± 0.026 | 0.205 ± 0.067 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, K.K.; Tieu, K.A.; Pham, S.T. Synergistic and Competitive Effects between Zinc Dialkyldithiophosphates and Modern Generation of Additives in Engine Oil. Lubricants 2021, 9, 35. https://doi.org/10.3390/lubricants9040035
Huynh KK, Tieu KA, Pham ST. Synergistic and Competitive Effects between Zinc Dialkyldithiophosphates and Modern Generation of Additives in Engine Oil. Lubricants. 2021; 9(4):35. https://doi.org/10.3390/lubricants9040035
Chicago/Turabian StyleHuynh, Khai K., Kiet A. Tieu, and Sang T. Pham. 2021. "Synergistic and Competitive Effects between Zinc Dialkyldithiophosphates and Modern Generation of Additives in Engine Oil" Lubricants 9, no. 4: 35. https://doi.org/10.3390/lubricants9040035
APA StyleHuynh, K. K., Tieu, K. A., & Pham, S. T. (2021). Synergistic and Competitive Effects between Zinc Dialkyldithiophosphates and Modern Generation of Additives in Engine Oil. Lubricants, 9(4), 35. https://doi.org/10.3390/lubricants9040035