Inhibitory Effects of Plant Trypsin Inhibitors Msti-94 and Msti-16 on Therioaphis trifolii (Monell) (Homoptera: Aphididae) in Alfalfa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aphid Sample
2.2. Artificial Feeding Device and Artificial Diet
2.3. Alfalfa Sample
2.4. Verification of the mRNA Level Using RT-qPCR
2.5. Electrophoresis of the Prokaryotic Expression and Protein Purification
2.6. Biological Assay of Msti the on Spotted Alfalfa Aphid
2.6.1. Recombinant Expressing Bacteria
2.6.2. Recombinant Purified Protein Treatment
2.6.3. Feeding Method
2.7. Pre-Treatment of Enzymatic Activities of Samples
2.8. Determining Total Enzymatic Activity
3. Results
3.1. Verification of the mRNA Level Using RT-qPCR
3.2. Gene Cloning, Prokaryotic Expression, and Protein Purification of Msti
3.3. Analysis of Survival and Reproduction
3.3.1. Effect of the Msti Recombinant Expressing Bacteria of Spotted Alfalfa Aphids
3.3.2. Effect of the Msti Recombinant Purified Protein on the Spotted Alfalfa Aphids
3.4. Enzymatic Activities
3.4.1. Effect of the Msti Recombinant Expressing Bacteria on Enzyme Activity in Spotted Alfalfa Aphids
3.4.2. Effect of the Msti Recombinant Purified Protein on Enzyme Activity in Spotted Alfalfa Aphids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Msti | Medicago sativa trypsin inhibitors |
EI | Enzyme-Inhibitor; PI: Protease inhibitors |
CpTi | Cowpea trypsin inhibitors |
TI | Trypsin inhibitors |
CTP | Chymotrypsin inhibitors |
CPI | Cysteine proteinase inhibitor |
STI | Soybean trypsin inhibitors |
MTI | Mustard trypsin inhibitors |
ELISA | Enzyme-linked immunosorbent assay |
RNA | Ribonucleic acid |
DNA | Deoxyribonucleic acid |
cDNA | Complementary DNA |
mRNA | Messenger RNA |
SDS | Sodium dodecyl sulfate |
SDS-PAGE | Sodium dodecyl sulfate-Polyacrylamide gel electrophoresis |
PBS | Phosphate-buffered saline |
HRP | Horseradish peroxidase |
DEGs | Differentially expressed genes |
IPTG | Isopropyl β-D-1-thiogalactopyranoside |
KTI | Kunitz type trypsin inhibitors |
kDa | Kilodalton |
RT-qPCR | Quantitative real time polymerase chain reaction |
OD | Optical density |
MBP | Maltose Binding Protein |
GST | Glutathione S-transferase |
His | Histidine |
BApNA | N-α-benzoyl-L-arginine ρ-nitroanilide |
L-Leu-pNA | L-Leucine-p-nitroanilide |
References
- Liu, C.; Lan, J. Variations of oxidase in the seedling of three alfalfa varieties infested by Therioaphis trifolii Monell (Homoptera: Aphididae). Acta Agrestia Sinica 2009, 17, 32–35. [Google Scholar]
- Walker, G.P.; Cameron, P.J. Therioaphis trifolii (Monell) forma maculata (Buckton), spotted alfalfa aphid (Homoptera: Aphididae); Technical communication; (Commonwealth Institute of Biological Control); FAO: Roma, Italy, 1989. [Google Scholar]
- Wu, Z.-g. An assessment of economic losses of alfalfa caused by Therioaphis trifolii (Homoptera: Callaphididae) in China. Ningxia J. Agric. For. Sci. Technol. 2013, 11, 036. [Google Scholar]
- Van Den Bosch, R.; Schlinger, E.I.; Dietrick, E.J.; Hall, J.C.; Puttler, B. Studies on succession, distribution, and phenology of imported parasites of Therioaphis trifolii (Monell) in Southern California. Ecology 1964, 45, 602–621. [Google Scholar] [CrossRef]
- Ma, J.H.; Zhu, M.M.; Zhang, R.; Yu, H.Y.; Ma, R. Screening of bio-pesticides on Therioaphis trifolii and effect of pesticides on insect natural enemy. Agrochemicals 2008, 8, 33. [Google Scholar]
- Ming, B.W. Effect of Irrigation Methods and Quota on Morphological Characteristics of Alfalfa in Wulanbuhe Sandy Region. Acta Ecol. Sin. 2002, 8, 139–148. [Google Scholar]
- Cuperus, G.W.; Radcliffe, E.B.; Barnes, D.K.; Marten, G.C. Economic injury levels and economic thresholds for pea aphid, Acyrthosiphon pisum (Harris), on alfalfa. Crop Prot. 1982, 1, 453–463. [Google Scholar] [CrossRef]
- Kodet, R.T.; Nielson, M.W.; Kuehl, R.O. Effect of Temperature and Photoperiod on the Biology of Blue Alfalfa Aphid, Acyrthosiphon Kondoi Shinji (No. 1660); US Deptartment of Agriculture, Agricultural Research Service: Maryland, MA, USA, 1982.
- Koiwa, H.; Bressan, R.A.; Hasegawa, P.M. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 1997, 2, 379–384. [Google Scholar] [CrossRef]
- Rudra, S.; Eliseev, A.V. Enzyme-controlled molecular recognition: Selective targeting of trypsin with a substrate-inhibitor supramolecular complex. J. Am. Chem. Soc. 1998, 120, 11543–11547. [Google Scholar] [CrossRef]
- Habib, H.; Fazili, K.M. Plant protease inhibitors: A defense strategy in plants. Biotechnol. Mol. Biol. Rev. 2007, 2, 68–85. [Google Scholar]
- Zhao, R.; Fan, Y.; Shi, X.; Wang, J.; Zong, W. Highly insect-resistant transgenic tobacco plants containing both Bt and CpTI genes. Chin. J. Biotechnol. 1995, 11, 1–7. [Google Scholar] [PubMed]
- Boulter, D.; Gatehouse, A.M.R.; Hilder, V. Use of cowpea trypsin inhibitor (CpTI) to protect plants against insect predation. Biotechnol. Adv. 1989, 7, 489–497. [Google Scholar] [CrossRef]
- Mickel, C.E. Susceptibility of processed soy flour and soy grits in storage to attack by Tribolium castaneum (Herbst). Univ. Minnesota Agric. Exp. Station Tech. Bull. 1947, 178, 1–20. [Google Scholar]
- Liu, W.G.; Xue, Q.Z. Proteinase inhibitors and their application in insect-resistant gene engineering. Biotechnol. Inf. 2000, 1, 20–25. (In Chinese) [Google Scholar]
- De Leo, F.; Gallerani, R. The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. Insect Biochem. Mol. Biol. 2002, 32, 489–496. [Google Scholar] [CrossRef]
- Rahbé, Y.; Ferrasson, E.; Rabesona, H.; Quillien, L. Toxicity to the pea aphid Acyrthosiphon pisum of anti-chymotrypsin isoforms and fragments of Bowman–Birk protease inhibitors from pea seeds. Insect Biochem. Mol. Biol. 2003, 33, 299–306. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Cheng, C.P.; Yeh, K.W. Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol. J. 2010, 8, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Hardwicke, M.A.; Lu, H.; Luo, L.; Diamond, M.; Sung, C.M.; Carson, J.D.; Plant, R.; Gardiner, C.; Wang, J.; Oleykowski, C.A.; et al. Abstract C63: Biological characterization of GSK2126458, a novel and potent inhibitor of phosphoinositide 3-kinase and the mammalian target of rapamycin (mTOR). AACR J. 2009, C63. [Google Scholar] [CrossRef]
- Ryan, C.A. Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Ann. Rev. Phytopathol. 1990, 28, 425–449. [Google Scholar] [CrossRef]
- Macedo, M.L.; das Graças Machado Freire, M. Insect digestive enzymes as a target for pest control. Invertebr. Surviv. J. 2011, 8, 190–198. [Google Scholar]
- Broadway, R.M.; Duffey, S.S. Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exiqua. J. Insect Physiol. 1986, 32, 827–833. [Google Scholar] [CrossRef]
- Mcmanus, M.T.; Burgess, E.P.J. Effects of the soybean (Kunitz) trypsin inhibitor on growth and digestive proteases of larvae of Spodoptera litura. J. Insect Physiol 1995, 41, 731–738. [Google Scholar] [CrossRef]
- Volpicella, M.; Ceci, L.R.; Gallerani, R.; Jongsma, M.A.; Beekwilder, J. Functional expression on bacteriophage of the mustard trypsin inhibitor MTI-2. Biochem. Biophys. Res. Commun. 2001, 280, 813–817. [Google Scholar] [CrossRef]
- Tu, X.B.; Zhao, H.L.; Zhang, Z.H. Transcriptome approach to understand the potential mechanisms of resistant and susceptible alfalfa (Medicago sativa L.) cultivars in response to aphid feeding. J. Integr. Agric. 2018, 17, 2518–2527. [Google Scholar] [CrossRef]
- Liquin, R.M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef] [Green Version]
- Mittler, T.E.; Dadd, R.H. Studies on the artificial feeding of the aphid Myzus persicae (Sulzer)-I. Relative uptake of water and sucrose solutions. J. Insect Physiol. 1963, 9, 623–645. [Google Scholar] [CrossRef]
- Van Emden, H.F. An increase in the longevity of adult Aphis fabae fed artificially through parafilm membranes on liquids under pressure. Entomologia Experimentalis et Applicata 1967, 10, 166–170. [Google Scholar] [CrossRef]
- Auclair, J.L.; Cartier, J.J. Pea aphid: Rearing on a chemically defined diet. Science 1963, 142, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Erlanger, B.F.; Kokowsky, N.; Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 1961, 95, 271–278. [Google Scholar] [CrossRef]
- Birk, Y. Structure-Activity Relationships of Several Trypsin and Chymotrypsin Inhibitors from Legume Seeds. In Proteinase Inhibitors; Springer: Berlin/Heidelberg, Germany, 1974; pp. 355–361. [Google Scholar]
- Takesue, Y.; Yokota, K.; Nishi, Y.; Taguchi, R.; Ikezawa, H. Solubilization of trehalase from rabbit renal and intestinal brush-border membranes by a phosphatidylinositol-specific phospholipase C. FEBS Lett. 1986, 201, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Zhu-Salzman, K.; Zeng, R. Insect response to plant defensive protease inhibitors. Ann. Rev. Entomol. 2015, 60, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Kunitz, M. Crystalline soybean trypsin inhibitor. II. General properties. J. Gen. Physiol. 1947, 30, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Roychaudhuri, R.; Sarath, G.; Zeece, M.; Markwell, J. Reversible denaturation of the soybean Kunitz trypsin inhibitor. Arch. Biochem. Biophys. 2003, 412, 20–26. [Google Scholar] [CrossRef]
- Amirhusin, B.; Shade, R.E.; Koiwa, H.; Paul, M.H.; Ray, A.B.; Larry, L.M.; Zhu-Salzman, K. Protease inhibitors from several classes work synergistically against Callosobruchus maculatus. J. Insect Physiol. 2007, 53, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Dhande, R.S.; Chikhale, N.J. Plant protease inhibitors: Strategy for pest control in crops. Lifesci. Leafl. 2014, 58, 94–117. [Google Scholar]
- Meng, F.L. Research on the development of botanical pesticide based on analysis of scientific materials. In Adv. Mat. Res. 2011, 282, 509–513. [Google Scholar] [CrossRef]
- Houseman, J.G.; Larocque, A.M.; Thie, N.M.R. Insect proteases, plant protease inhibitors, and possible pest control. Mem. Entomol. Soc. Can. 1991, 123, 3–11. [Google Scholar] [CrossRef]
- Franco, O.L.; Dias, S.C.; Magalhaes, C.P.; Monteiro, A.C.; Bloch, C., Jr.; Melo, F.R.; Oliveira-Neto, O.B.; Monnerat, R.G.; Grossi-de-Sa, M.F. Effects of soybean Kunitz trypsin inhibitor on the cotton boll weevil (Anthonomus grandis). Phytochemistry 2004, 65, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Chougule, N.P.; Doyle, E.; Fitches, E.; Gatehouse, J.A. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. J. Insect Physiol. 2008, 54, 563–572. [Google Scholar] [CrossRef]
- Schneider, F.; Houseman, J.G.; Morrison, P.E. Activity cycles and the regulation of digestive proteases in the posterior midgut of Stomoxys calcitrans (L.) (Diptera: Muscidae). Insect Biochem. 1987, 17, 859–862. [Google Scholar] [CrossRef]
- Broadway, R.M.; Duffey, S.S. The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol. 1986, 32, 673–680. [Google Scholar] [CrossRef]
- Zhi, W.W.; Qing, L.W. Effect of exogenous insect resistance on cotton heterosis. Guizhou Agric. Sci. 2010, 38, 7–10. [Google Scholar]
- Shi, M.J.; Lu, P.L.; Chen, J. Interaction between exogenous insect-resistant genes and plants’own insect-resistant defenses. Insect Knowl. 2010, 47, 841–847. [Google Scholar]
Reagent Name | Dosage (or Concentration) |
---|---|
CuCl2·2H2O | 0.02 g |
FeCl3·6H2O | 1.1 g |
MnCl2·4H2O | 0.04 g |
ZnSO4·H2O | 0.085 g |
MgSO4·7H2O | 0.123 g |
K2HPO4·3H2O | 1.5 g |
Biotin | 0.01 g |
Folic acid | 0.05 g |
Lactochrome | 0.025 g |
Calcium pantothenate | 0.05 g |
Ammonium sulfate (NH4)2 SO4 | 0.025 g |
Pyridoxine hydrochloride | 0.025 g |
Casein hydrolysate | 2 g |
Yeast powder | 2 g |
Honey | 10 g |
Saccharose | 30 g |
Choline chloride | 0.05 g |
Inose | 0.05 g |
Niacin | 0.01 g |
Ascorbic acid | 0.1 g |
Para-aminobenzoic | 0.01 g |
ddH2O | 500 mL |
KOH/NaOH (0.5 M) | 0.5 mol/L |
Genes | Primers (5′-3′) |
---|---|
Msti-64 | CTTCCTTTCTCTCTTAGCGTTG; GCATCAGGGTTACGGATTAC |
Msti-86 | CCTTCTGGGCTTCACTTCA; TACAACGACACTGAGGAGGG |
Msti-94 | CACCATACCAGGAATAAGTCC; GACCACCAATACCAACACAAG |
Msti-95 | GGTGTAGAAATAACTGGTGGCA; GTCCAACATAAGCACAATCTCC |
Msti-14 | ACTCCTATGGCAGCAGAAGA; CACTCCTATTGTCCCTATCACC |
Msti-16 | GGGTGTAGAAGGTAATCCAAGT; CAGGACAGAAAGAAAGCACA |
Genes | Gene Sequences |
---|---|
Msti-16 | GGATCCATGAAAACCTCACTCTTAGCATTTTCCACCATCTTTTTAGCCTT CATTTGCAAAACTATTGCAGCACCTGAACCAGTTCTTGACATTTCAGGC AAACAAGTGACAACTGGTGTAAAATACTATATTTTACCAGTCATAAGA GGTAAAGGTGGTGGTTTAACAGTTGCAAACCATGGTGAAAACAACCAA ACATGTCCCCTTTATGTTGTTCAAGAGAAGCTTGAAGTAAAGAATGGTG AAGCAGTTACTTTCACACCTTATAATGCTAAACAAGGTGTGATTCTAAC TTCTACTGATCTCAATATTAAGTCCTTTGTAACAAAAACTAAATGTCCTC AAACACAAGTTTGGAAGCTTCTTAAAGAGTTGACAGGGGTGTGGTTTTT AGCTACAGGGGGTGTAGAAGGTAATCCAAGTATGGCAACTGTTGGTAA TTGGTTTAAGATTGAGAAAGCTGATAAAGATTATGTGCTTTCTTTCTGTC CTGCTGAAGCTTGCAAATGTCAAACTTTGTGTAGGGAACTAGGGTTGTT TGTTGATGATAAGGGAAATAAGCACTTAGCTCTTAGTGATCAAATTCCA TCATTTAGGGTTGTGTTTAAAAGGGCTTAACTCGAG |
Msti-94 | GGATCCATGAAGCATCTTTTATCACTAACCCTTTCCTTCTTCATCTTTGT TTTCATCACCAATCTTTCACTAGCTACTTCAAATGATGTTGAGCAAGTAT TGGACATAAATGGTAACCCCATTTTCCCAGGTGGTCAATACTACATTTT GCCAGCACTTCGTGGCCCCGGAGGAGGAGGAGTAAGATTAGGAAGAA CCGGTGATTTAAAGTGTCCAGTTACCGTCTTACAAGATCGTAGAGAAG TCAAGAATGGTCTACCAGTGAAATTCACCATACCAGGAATAAGTCCTG GTATAATTTTCACTGGTACACCACTTGAGATCGAGTACACGAAGAAAC CTAGTTGCGCTGAATCAACAAAATGGTTAATATTTGTTGATAATGTTATT GGAAAAGCTTGTGTTGGTATTGGTGGTCCTGAAAATTACCCTGGTGTGC AAACATTGAGTGGCAAATTTAATATTCAGAAACATGCATCTGGATTTG GTTATCAGCTAGGGTTTTGTGTTACGGGGTCTCCTACTTGTTTGGATATT GGAAGGTTTGATAATGATGAAGCTGGAAGACGTTTGAATTTGACTGAA CATGAGGTTTATCATGTTGTGTTTGTTGATGCAGCTACTTATGAAGCTGA GTATATTAAGTCTGTTGTTTAACTCGAG |
Genes | Amino Acid Sequences |
---|---|
Msti-16 | MKTSLLAFSTIFLAFICKTIAAPEPVLDISGKQVTTGVKYYILPVIRGKGGGLTV ANHGENNQTCPLYVVQEKLEVKNGEAVTFTPYNAKQGVILTSTDLNIKSFV TKTKCPQTQVWKLLKELTGVWFLATGGVEGNPSMATVGNWFKIEKADKD YVLSFCPAEACKCQTLCRELGLFVDDKGNKHLALSDQIPSFRVVFKRA* |
Msti-94 | MKHLLSLTLSFFIFVFITNLSLATSNDVEQVLDINGNPIFPGGQYYILPALRGP GGGGVRLGRTGDLKCPVTVLQDRREVKNGLPVKFTIPGISPGIIFTGTPLEIEY TKKPSCAESTKWLIFVDNVIGKACVGIGGPENYPGVQTLSGKFNIQKHASGF GYQLGFCVTGSPTCLDIGRFDNDEAGRRLNLTEHEVYHVVFVDAATYEAEYIKSVI* |
Reagent | 10% Separation Gel |
---|---|
ddH2O | 1.4 mL |
Tris Buffer (pH 8.8) | 1.3 mL |
30% Acrylamide | 1.7 mL |
10% SDS (Sodium dodecyl sulfate) | 0.05 mL |
10% APS (10% Ammonium persulfate solution) | 0.05 mL |
TEMED (Tetramethylethylenediamine) | 0.003 mL |
Propanetriol | 0.5 mL |
Candidate Genes | Identity | Number (NR) | Description |
---|---|---|---|
Msti-16 | 95% | XM_003620121.2:49-660 | Kunitz trypsin inhibitor |
Msti-94 | 95% | AF526372.1:1773-2423 | Kunitz trypsin inhibitor |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Ullah, H.; McNeill, M.R.; Du, G.; Hao, K.; Tu, X.; Zhang, Z. Inhibitory Effects of Plant Trypsin Inhibitors Msti-94 and Msti-16 on Therioaphis trifolii (Monell) (Homoptera: Aphididae) in Alfalfa. Insects 2019, 10, 154. https://doi.org/10.3390/insects10060154
Zhao H, Ullah H, McNeill MR, Du G, Hao K, Tu X, Zhang Z. Inhibitory Effects of Plant Trypsin Inhibitors Msti-94 and Msti-16 on Therioaphis trifolii (Monell) (Homoptera: Aphididae) in Alfalfa. Insects. 2019; 10(6):154. https://doi.org/10.3390/insects10060154
Chicago/Turabian StyleZhao, Hailong, Hidayat Ullah, Mark Richard McNeill, Guilin Du, Kun Hao, Xiongbing Tu, and Zehua Zhang. 2019. "Inhibitory Effects of Plant Trypsin Inhibitors Msti-94 and Msti-16 on Therioaphis trifolii (Monell) (Homoptera: Aphididae) in Alfalfa" Insects 10, no. 6: 154. https://doi.org/10.3390/insects10060154
APA StyleZhao, H., Ullah, H., McNeill, M. R., Du, G., Hao, K., Tu, X., & Zhang, Z. (2019). Inhibitory Effects of Plant Trypsin Inhibitors Msti-94 and Msti-16 on Therioaphis trifolii (Monell) (Homoptera: Aphididae) in Alfalfa. Insects, 10(6), 154. https://doi.org/10.3390/insects10060154