Volatile and Non-Volatile Organic Compounds Stimulate Oviposition by Aphidophagous Predators
Abstract
:Simple Summary
Abstract
1. Introduction
2. Evidence of Oviposition Stimulation
2.1. Tabulated Data on Oviposition Stimulation by VOCs and Non-VOCS
2.2. Oviposition Stimulants and Coccinellids
2.3. Oviposition Stimulants and Syrphids
2.4. Oviposition Stimulants and Chrysopids
3. Synthesis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paré, P.W.; Tumlinson, J.H. Plant volatiles as a defense against insect herbivores. Plant Physiol. 1999, 121, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatehouse, J.A. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol. 2002, 156, 145–169. [Google Scholar] [CrossRef] [Green Version]
- Piechulla, B.; Pott, M.B. Plant scents—Mediators of inter- and intraorganismic communication. Planta 2003, 217, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.; Oliveira, J.N.; da Costa, J.G.; Loza-Reyes, E.; Bleicher, E.; Santana, A.E.G.; Caulfield, J.C.; Mayon, P.; Dewhirst, S.Y.; Bruce, T.J.A.; et al. Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-jasmone. Phytochemistry 2012, 78, 81–88. [Google Scholar] [CrossRef]
- Truong, D.-H.; Delory, B.M.; Vanderplanck, M.; Brostaux, Y.; Vandereycken, A.; Heuskin, S.; Delaplace, P.; Francis, F.; Lognay, G. Temperature regimes and aphid density interactions differentially influence VOC emissions in Arabidopsis. Arthropod-Plant Interact. 2014, 8, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Han, B.Y.; Chen, Z.M. Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. J. Agric. Food Chem. 2002, 50, 2571–2575. [Google Scholar] [CrossRef]
- James, D.G. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis. J. Chem. Ecol. 2003, 29, 1601–1609. [Google Scholar] [CrossRef]
- Powell, W.; Pickett, J.A. Manipulation of parasitoids for aphid pest management: Progress and prospects. Pest Manage. Sci. 2003, 59, 149–155. [Google Scholar] [CrossRef]
- Pareja, M.; Moraes, M.C.B.; Clark, S.J.; Birkett, M.A.; Powell, W. Response of the aphid parasitoid Aphidius funebris to volatiles from undamaged and aphid-infested Centaurea nigra. J. Chem. Ecol. 2007, 33, 695–710. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, L.; Liu, Y.; Chen, J.; Francis, F. Use of slow-release plant infochemicals to control aphids: A first investigation in a Belgian wheat field. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.J.; Hwang, S.Y. Cucumber plants baited with methyl salicylate accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) visiting to reduce cotton aphid (Hemiptera: Aphididae) infestation. J. Econ. Entomol. 2017, 110, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Hodge, S.; Bennett, M.; Mansfield, J.W.; Powell, G. Aphid-induction of defence-related metabolites in Arabidopsis thaliana is dependent upon density, aphid species and duration of infestation. Arthropod-Plant Interact. 2019, 13, 387–399. [Google Scholar] [CrossRef]
- Takahashi, S.; Hajika, M.; Takabayashi, J.; Fukui, M. Oviposition stimulants in the coccoid cuticular waxes of Aphytis yanonensis De Bach & Rosen. J. Chem. Ecol. 1990, 16, 1657–1665. [Google Scholar] [PubMed]
- Millar, J.G.; Hare, J.D. Identification and synthesis of a kairomone inducing oviposition by the parasitoid Aphytis melinus from California red scale covers. J. Chem. Ecol. 1993, 19, 1721–1736. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.C.; Starratt, A.N.; Bodnaryk, R.P. Oviposition responses of Coleomegilla maculata lengi (Coleoptera: Coccinellidae) to the wood and extracts of Juniperus virginiana and to various chemicals. Ann. Entomol. Soc. Am. 1973, 66, 452–456. [Google Scholar] [CrossRef]
- Smith, B.C.; Williams, R.R. Temperature relations of adult Coleomegilla maculata lengi and C. m. medialis (Coleoptera: Coccinellidae) and responses to ovipositional stimulants. Can. Entomol. 1976, 108, 925–930. [Google Scholar] [CrossRef]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Do bioflavonoids in Juniperus virginiana heartwood stimulate oviposition in the ladybird Coleomegilla maculata? Int. J. Insect Sci. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Utilization of quercetin as an oviposition stimulant by lab-cultured Coleomegilla maculata in the presence of conspecifics and a tissue substrate. Insects 2018, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Alhmedi, A.; Haubruge, E.; Francis, F. Identification of limonene as a potential kairomone of the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Entomol. 2010, 107, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Shonouda, M.L.; Bombosch, S.; Shalaby, A.M.; Osman, S.I. Biological and chemical characterization of a kairomone excreted by the bean aphids, Aphis fabae Scop. (Hom., Aphididae) and its effect on the predator Metasyrphus corollae Fabr. I. Isolation, identification and bioassay of aphid-kairomone. J. Appl. Entomol. 1998, 122, 15–23. [Google Scholar] [CrossRef]
- Shonouda, M.L.; Bombosch, S.; Shalaby, A.M.; Osman, S.I. Biological and chemical characterization of a kairomone excreted by the bean aphids, Aphis fabae Scop. (Hom., Aphididae) and its effect on the predator Metasyrphus corollae Fabr. II. Behavioural response of the predator M. corollae to the aphid kairomone. J. Appl. Entomol. 1998, 122, 25–28. [Google Scholar] [CrossRef]
- Verheggen, F.J.; Arnaud, L.; Bartram, S.; Gohy, M.; Haubruge, E. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. J. Chem. Ecol. 2008, 34, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, P.; Verheggen, F.; Capella, Q.; Francis, F.; Haubruge, E. An introduction device for the aphidophagous hoverfly Episyrphus balteatus (De Geer) (Diptera: Syrphidae). Biol. Control 2010, 54, 181–188. [Google Scholar] [CrossRef]
- Leroy, P.D.; Sabri, A.; Heuskin, S.; Thonart, P.; Lognay, G.; Verheggen, F.; Francis, F.; Brostaux, Y.; Felton, G.W.; Haubruge, E. Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat. Comm. 2011, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakthavatsalam, N.; Singh, S.P. L-tryptophan as an ovipositional attractant for Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J. Biol. Control 1996, 10, 21–27. [Google Scholar]
- Bakthavatsalam, N.; Tandon, P.L.; Patil, S.B.; Hugar, B.; Hosamani, A. Kairomone formulations as reinforcing agents for increasing abundance of Chrysoperla carnea (Stephens) in cotton ecosystem. J. Biol. Control 2007, 21, 1–8. [Google Scholar]
- Baldacchino, F.; Tabilio, M.R.; Letardi, A.; Santarcangelo, P. Evaluation of a lure efficiency towards green lacewings in organic apricot orchard. Acta Horticulturae 2010, 862, 461–464. [Google Scholar] [CrossRef]
- Koczor, S.; Knudsen, G.; Hatleli, L.; Sentkiralyi, F.; Toth, M. Manipulation of oviposition and overwintering site choice of common green lacewings with synthetic lure (Neuroptera: Chrysopidae). J. Appl. Entomol. 2015, 139, 201–206. [Google Scholar] [CrossRef]
- Salamanca, J.; Souza, B.; Lundgren, J.G.; Rodriguez-Saona, C. From laboratory to field: Electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology 2017, 27, 51–63. [Google Scholar] [CrossRef]
- Xu, X.; Cai, X.; Bian, L.; Luo, Z.; Xin, Z.; Chen, Z. Electrophysiological and behavioral responses of Chrysopa phyllochroma (Neuroptera: Chrysopidae) to plant volatiles. Environ. Entomol. 2015, 44, 1425–1433. [Google Scholar] [CrossRef]
- Hodek, I.; Honĕk, A. Ecology of Coccinellidae; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Evans, E.E.; Dixon, A.F.G. Cues for oviposition by ladybird beetles (Coccinellidae): Response to aphids. J. Anim. Ecol. 1986, 55, 1027–1034. [Google Scholar] [CrossRef]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Potential of 2,4-dihydroxybenzoic acid as an oviposition stimulant for mass-reared ladybird beetles. J. Insect Sci. Online 2019, 19, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joachim, C.; Vosteen, I.; Weisser, W.W. The aphid alarm pheromone (E)-β-farnesene does not act as a cue for predators searching on a plant. Chemoecology 2015, 25, 105–113. [Google Scholar] [CrossRef]
- Seagraves, M. Lady beetle oviposition behavior in response to the trophic environment. Biol. Control 2009, 51, 313–322. [Google Scholar] [CrossRef]
- Shonouda, M.L. Aphid aqueous-extract as a source of host searching kairomones for the aphidophagous predator Coccinella septempunctata L. (Col., Coccinellidae). J. Pest Sci. 1999, 72, 126–128. [Google Scholar]
- Almohamad, R.; Verheggen, F.J.; Haubruge, E. Searching and oviposition behavior of aphidophagous hoverflies (Diptera: Syrphidae): A review. Biotechnol. Agron. Soc. Environ. 2009, 13, 467–481. [Google Scholar]
- Pekas, A.; De Craecker, I.; Boonen, S.; Wäckers, F.L.; Moerkens, R. One stone; two birds: Concurrent pest control and pollination services provided by aphidophagous hoverflies. Biol. Control 2020, 149, 104328. [Google Scholar] [CrossRef]
- Chandler, A.E.F. The relationship between aphid infestations and oviposition by aphidophagous Syrphidae (Diptera). Ann. Appl. Biol. 1968, 61, 425–434. [Google Scholar] [CrossRef]
- Budenberg, W.J.; Powell, W. The role of honeydew as an ovipositional stimulant for two species of syrphids. Entomol. Exp. Appl. 1992, 4, 57–61. [Google Scholar] [CrossRef]
- Shonouda, M.L. Crude aqueous-extract (kairomone) from Aphis fabae Scop. (Hom., Aphidae) and its effect on the behaviour of the predator Metasyrphus corollae Fabr. (Dipt., Syrphidae) female. J. Appl. Entomol. 1996, 120, 489–492. [Google Scholar] [CrossRef]
- Cui, L.L.; Francis, F.; Heuskin, S.; Lognay, G.; Liu, Y.-J.; Dong, J.; Chen, J.L.; Song, X.-M.; Liu, Y. The functional significance of E-β-farnesene: Does it influence the populations of aphid natural enemies in the fields? Biol. Control 2012, 60, 108–112. [Google Scholar] [CrossRef]
- Henry, C.S.; Brooks, S.J.; Thierry, D.; Duelli, P.; Johnson, J.B. The common green lacewing (Chrysoperla carnea s. lat.) and the sibling species problem, Ch. 3. In Lacewings in the Crop Environment; McEwen, P., New, T.R., Whittington, A.E., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 29–42. [Google Scholar]
- Villa, M.; Pereira, J.A.; Santos, S.A.P.; Benhadi-Marín, J.; Bento, A.; Mexia, A. Life-history parameters of Chrysoperla carnea s.l. fed on spontaneous plant species and insect honeydews: Importance for conservation biological control. BioControl 2016, 61, 533–543. [Google Scholar] [CrossRef]
- Hagen, K.S.; Greany, P.; Sawall, E.F.; Tassan, R.L. Tryptophan in artificial honeydews as a source of an attractant for adult Chrysopa carnea. Environ. Entomol. 1976, 5, 458–468. [Google Scholar] [CrossRef]
- McEwen, P.K.; Clow, S.; Jervis, M.A.; Kidd, N.A.C. Alteration in searching behaviour of adult female green lacewings Chrysoperla carnea (Neur.: Chrysopidae) following contact with honeydew of the black scale Saissetia oleae (Hom.: Coccidae) and solutions containing acid hydrolyzed L-tryptophan. Entomophaga 1993, 38, 347–354. [Google Scholar]
- Rodriguez-Saona, C.; Kaplan, I.; Braasch, J.; Chinnasamy, D.; Williams, L. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control 2019, 59, 294–303. [Google Scholar] [CrossRef]
- Mallinger, R.E.; Hogg, D.B.; Gratton, C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J. Econ. Entomol. 2011, 104, 115–124. [Google Scholar] [CrossRef]
- Tóth, M.; Bozsik, A.; Szentkirályi, F.; Letardi, A.; Tabilio, M.R.; Verdinelli, M.; Zandigiacomo, P.; Jekisa, J.; Szarukán, I. Phenylacetaldehyde: A chemical attractant for common green lacewings (Chrysoperla carnea s.l., Neuroptera: Chrysopidae). Eur. J. Entomol. 2006, 103, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Tóth, M.; Szentkirályi, F.; Vuts, J.; Letardi, A.; Tabilio, M.R.; Jaastad, G.; Knudsen, G.K. Optimization of a phenylacetaldehyde-based attractant for common green lacewings (Chrysoperla carnea s.l.). J. Chem. Ecol. 2009, 35, 449–458. [Google Scholar] [CrossRef]
- Mofikoya, A.O.; Bui, T.N.T.; Kivimäenpää, M.; Holopainen, J.K.; Himanen, S.J.; Blande, J.D. Foliar behaviour of biogenic semi-volatiles: Potential applications in sustainable pest management. Arthropod-Plant Interact. 2019, 13, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Sasso, R.; Iodice, L.; Woodcock, C.M.; Pickett, J.A.; Guerrieri, E. Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera: Braconidae) to tomato plant volatiles. Chemoecology 2009, 19, 195–201. [Google Scholar] [CrossRef]
Predator | Compound Name (Concn) | EPR* | Reference |
---|---|---|---|
Coleomegilla maculata lengi (Col.: Coccinellidae) | salicylic acid (0.04 mg/cm2) | 3.1 | [15] |
o-coumaric acid (0.04 mg/cm2) protocatechuic | 2.2 | ||
acid (0.04 mg/cm2) | 2.6 | ||
guaiacol (1%) | 5.0 | [16] | |
resorcinol (0.2%) | 6.0 | ||
Coleomegilla maculata | quercetin (0.004 mg/mL) | 1.5 | [17] |
taxifolin (0.004 mg/mL) | 1.4 | ||
naringenin (0.004 mg/mL) | 1.5 | ||
quercetin (0.008 mg/mL) | 1.3 | [18] | |
Harmonia axyridis (Col: Coccinellidae) | limonene (0.10 μg/μL) | 2.2 | [19] |
β-caryophyllene (0.10 μg/μL) | 2.0 | ||
Metasyrphus corollae (Dip.: Syrphidae) | tricosane (0.5 mg/mL) | 2.1 | [20] |
tricosane + tetracosane + pentacosane + | 6.8 | ||
hexacosane + octacosane mix (2.5 mg/mL) | |||
hexacosane (0.5 mg/mL) | 4.7 | [21] | |
Episyrphus balteatus (Dip.: Syrphidae) | (Z)-3-hexenol (0.40 μg/μL) | 8.5 | [22] |
(E)-β-farnesene (0.40 μg/μL) | 18.0 | ||
E.balteatus | (E)-β-farnesene (0.40 μg/μL) | 3.6 | [23] |
3-methyl-2-butenal (0.35 ng/μL) | 11.8 | [24] | |
2-methyl-butanoic acid (0.024 ng/ μL) | 3.6 | ||
Chrysoperla carnea (Neu: Chrysopidae) | L-tryptophan (33.3 mg/mL) | 2.3 | [25,26] |
L-tryptophan (33.3 mg/mL)-field | 2.8 | ||
C. carnea | acetic acid + methyl salicylate + | 12.0 | [27,28] |
phenylacetaldehyde mixture (300 mg)-field. | 3.4 | ||
Chrysoperla rufilabris (Neu: Chrysopidae) | methyl salicylate (1.0 mg/mL)-greenhouse | 2.1 | [29] |
Chrysopa phyllochroma (Neu: Chrysopidae) | linalool (5 μL) | 3.3 | [30] |
(Z)-3-hexenyl acetate (5 μL) | 2.2 | ||
(3E)-4,8-dimethyl-1,3,7-nonatriene (5 μL). | 2.4 |
Compound | Molecular Formula | Physical State | Molecular Weight (g/mol) | Vapor Pressure (mm Hg, 25°C) | Odor Strength | Web. * |
---|---|---|---|---|---|---|
o-coumaric acid | C9H8O3 | crystalline powder | 164.2 | 1.9 × 10−5 | n/a | i, ii |
resorcinol† | C6H6O2 | solid | 110.1 | 0.002 | medium | ii |
salicylic acid† | C7H6O3 | powder | 138.1 | 1.0 | low | ii |
guaiacol† | C7H8O2 | liquid or solid | 124.1 | 0.18 | high | ii |
protocatechuic acid | C7H6O4 | solid | 154.1 | n/a | low | ii |
quercetin | C15H10O7 | powder | 302.2 | 2.8 × 10−14 | n/a | i |
taxifolin | C15H12O7 | powder | 304.2 | 1.3 × 10−13 | n/a | iii |
naringenin | C15H12O5 | powder | 272.2 | n/a | n/a | ii |
limonene† | C10H16 | clear liquid | 136.2 | 1.55 | medium | ii |
β-caryophyllene† | C15H24 | oily liquid | 204.3 | 0.01 | medium | ii |
(Z)-3-hexenol† | C6H12O | clear liquid | 100.2 | 1.04 | high | ii |
(E)-β-farnesene† | C15H24 | clear liquid | 204.3 | 0.01 | medium | ii |
3-methyl-2-butenal† | C5H8O | clear liquid | 84.1 | 8.25 | high | ii |
(Z)-3-hexenyl acetate† | C8H14O2 | clear liquid | 142.2 | 1.22 | high | ii |
2-methyl-butanoic acid† | C5H10O2 | clear liquid | 102.1 | 0.55 | medium | ii |
tricosane | C23H48 | waxy solid | 324.6 | 1.2 × 10−5 | n/a | ii |
tetracosane | C24H50 | waxy solid | 338.7 | 6.0 × 10−6 | n/a | ii |
pentacosane | C25H52 | waxy solid | 352.7 | 2.0 × 10−6 | n/a | ii |
hexacosane | C26H54 | waxy solid | 366.7 | 1.2 × 10−5 | n/a | ii |
octacosane | C28H58 | waxy solid | 394.8 | n/a | n/a | ii |
L-tryptophan | C11H12N2O2 | crystalline powder | 204.2 | n/a | n/a | ii |
acetic acid† | C2H4O2 | clear liquid | 60.0 | 15.7 | high | ii |
methyl salicylate† | C8H8O3 | clear liquid | 152.1 | 0.03 | medium | ii |
linalool† | C10H18O | clear liquid | 154.2 | 0.02 | medium | ii |
phenylacetaldehyde† | C8H8O | oily liquid | 120.1 | 0.37 | high | ii |
(3E)-4,8-dimethyl-1,3,7-nonatriene | C11H18 | liquid | 150.3 | n/a | n/a | i |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riddick, E.W. Volatile and Non-Volatile Organic Compounds Stimulate Oviposition by Aphidophagous Predators. Insects 2020, 11, 683. https://doi.org/10.3390/insects11100683
Riddick EW. Volatile and Non-Volatile Organic Compounds Stimulate Oviposition by Aphidophagous Predators. Insects. 2020; 11(10):683. https://doi.org/10.3390/insects11100683
Chicago/Turabian StyleRiddick, Eric W. 2020. "Volatile and Non-Volatile Organic Compounds Stimulate Oviposition by Aphidophagous Predators" Insects 11, no. 10: 683. https://doi.org/10.3390/insects11100683
APA StyleRiddick, E. W. (2020). Volatile and Non-Volatile Organic Compounds Stimulate Oviposition by Aphidophagous Predators. Insects, 11(10), 683. https://doi.org/10.3390/insects11100683