The Future of Organic Insect Pest Management: Be a Better Entomologist or Pay for Someone Who Is
Abstract
:Simple Summary
Abstract
1. Introduction
2. Challenges to Organic Pest Management
2.1. Preventative Actions: Crop Rotation, Soil and Nutrient Management, Sanitation, and Cultural Practices to Enhance Crop Health
2.2. Mechanical and Physical Control Actions: Augmentation Biological Control, Natural Enemy Habitat Development, and Non-Synthetic Controls
2.2.1. Augmentation
2.2.2. Natural Enemy Habitat Development
2.2.3. Non-Synthetic Controls
2.3. Chemical Controls: Biological, Botanical, or Approved Synthetic Substances
2.4. What Is Missing from the Federal NOP? Monitoring and Identification
2.4.1. Monitoring
2.4.2. Identification
2.5. Other Factors
2.5.1. Biological Knowledge
2.5.2. External Factors
3. Overcoming Challenges and Looking to the Future
An Example of Educational Programming for Improved Pest Management for Organic Growers
- Identification of pest species, appropriate field sampling patterns, determination of the number of samples needed, recognition of life stages, and what to count [138].
- Record keeping of scouting data includes developing a database and analysis tools that helps growers visually interpret their findings and provide easily retrievable information of the current season and past years.
- The use of electronic capture of real time field scouting data via apps on tablets and phones must be included as well. Such technology has already been instituted by many professional companies, but these are proprietary. Although there is a proliferation of farm aiding apps available for android and iPhones, there is little vetting for growers to ensure they are getting a quality product, maintaining privacy, or filtering unwanted influences on decision making as mentioned above. Most importantly such apps need to have a graphing tool to chart, in real time, population trends including natural enemy population dynamics such as seen with the iPM app [139].
- Information on multi-trophic interactions in diverse systems that includes host plant ranges of key pests and their associated natural enemies, designating those that are generalists and specialists and possible crossovers among crop plant species.
- The use of qualitative rating systems is an excellent approach to capturing a variety of pest impacts that is easily taught and widely applicable across crops, pest species and not limited by the size of the operation. Some examples of its use include Capinera et al. [140], Bellows et al. [141], Schroeder et al. [142], Ward [143], and Brainard et al. [144].
- Predicting pest occurrences and subsequent in-field population dynamics is crucial to cost-effective pest monitoring. As an example, Kogan et al. [145] outlined the successional colonization of annual crops by herbivores and natural enemies as a means to help predict certain pest groups in crops that have their succession clock restarted with every new planting. This concept may serve as a general guide to help growers better predict, time and prevent certain types of pest population issues such as seen with pests in nut crops [146].
- Understanding degree days also is crucial in preventative/predictive pest management planning. The University of California’s Integrated Pest Management website has a degree day calculator that is region, crop and pest specific [147]. This interface helps growers determine heat unit accumulation for crop phenology and prediction of pest growth and development. Additionally, degree day accumulation prompts certain management actions, growers benefit from programs that include timely reminders such as seen with Washington State University’s Decision Aid System [148]. However, education programs must teach advisors and growers how to validate these models in their area to fine tune the predictive ability, thus, making the tool more useful for an individualized regional approach if a Decision Aid System is lacking for their locality.
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohler, C.L.; Johnson, S.E. Crop Rotation on Organic Farms: A Planning Manual; Natural Resource, Agriculture, and Engineering Service: Ithaca, NY, USA, 2009; 156p. [Google Scholar]
- Sexson, D.L.; Wyman, J.A. Effect of crop rotation distance on populations of Colorado potato beetle (Coleoptera: Chrysomelidae): Development of areawide Colorado potato beetle pest management strategies. J. Econ. Entomol. 2005, 98, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Jones, V.P.; Unruh, T.R.; Horton, D.R.; Mills, N.J.; Brunner, J.F.; Beers, E.H.; Shearer, P.W. Tree fruit IPM programs in the western United States: The challenge of enhancing biological control through intensive management. Pest Manag. Sci. 2009, 65, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Magdoff, F.; van Es, H. Building Soils for Better Crops, 3rd ed.; SARE Outreach: College Park, MD, USA, 2010; 294p. [Google Scholar]
- Yedidia, I.; Benhamou, N.; Chet, I. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 1999, 65, 1061–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Duniway, J.M.; Browne, G.T.; Martin, F.N.; Ajwa, H.A.; Westerdahl, B.B.; Goodhue, R.E.; Haar, M.; Winterbottom, C. Methyl bromide alternatives evaluated for California strawberry nurseries. Calif. Agric. 2008, 62, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.Y.; Ye, M.; Li, C.Y.; Wang, R.L.; Wei, X.C.; Luo, S.M.; Zeng, R.S. Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J. Chem. Ecol. 2013, 39, 1036–1044. [Google Scholar] [CrossRef]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar] [CrossRef]
- Piñeda, A.; Kaplan, I.; Bezemer, T.M. Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci. 2017, 22, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, G.T. The Effects of Agricultural Waste-Based Compost Amendments in Organic Pest Management. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2019. [Google Scholar]
- CCOF. Available online: https://www.ccof.org/ (accessed on 12 November 2020).
- Van Driesche, R.; Hoddle, M.; Center, T. Control of Pests and Weeds by Natural Enemies: An Introduction to Biological Control; Blackwell Publishing: Malden, MA, USA, 2008; 488p. [Google Scholar]
- Lam, W.K.F.; Pedigo, L.P. Response of soybean insect communities to row width under crop-residue management systems. Environ. Entomol. 1998, 27, 1069–1079. [Google Scholar] [CrossRef]
- Quinn, N.F.; Brainard, D.C.; Szendrei, Z. The effect of conservation tillage and cover crop residue on beneficial arthropods and weed seed predation in acorn squash. Environ. Entomol. 2016, 45, 1543–1551. [Google Scholar] [CrossRef]
- Hajek, A.E.; Eilenberg, J. Natural Enemies: An Introduction to Biological Control; Cambridge University Press: Cambridge, UK, 2018; 452p. [Google Scholar]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A history of grafting. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; Volume 35, pp. 437–493. [Google Scholar]
- Döring, T.F.; Pautasso, M.; Wolfe, M.S.; Finckh, M.R. Pest and disease management in organic farming: Implications and inspirations for plant breeding. In Organic Crop Breeding; Lammerts van Bueren, E.T., Myers, J.R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 39–59. [Google Scholar] [CrossRef]
- Anderson, J.A.; Ellsworth, P.C.; Faria, J.C.; Head, G.P.; Owen, M.D.K.; Pilcher, C.D.; Shelton, A.M.; Meissle, M. Genetically engineered crops: Importance of diversified integrated pest management for agricultural sustainability. Front. Bioeng. Biotechnol. 2019, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Adam, K.L. Seed Production and Variety Development for Organic Systems; ATTRA, NCAT: Davis, CA, USA; 16p.
- Villa, T.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop landraces. Plant Genet. Resour. 2005, 3, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.M.; Chable, V. Breeding Initiatives of Seeds of Landraces, Amateur Varieties and Conservation Varieties: An Inventory and Case Studies; Louis Bolk Instituut: Driebergen, The Netherlands, 2009; 35p. [Google Scholar]
- Grasswitz, T.R. Integrated pest management (IPM) for small-scale farms in developed economies: Challenges and opportunities. Insects 2019, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Serajus Salaheen, S.; Biswas, D. Organic farming practices: Integrated culture versus monoculture safety and practice for organic food. In Safety and Practice for Organic Food; Biswas, D., Micallef, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 23–32. [Google Scholar] [CrossRef]
- Smith, O.M.; Cohen, A.L.; Reganold, J.P.; Jones, M.S.; Orpet, R.J.; Taylor, J.M.; Thurman, J.H.; Cornell, K.A.; Olsson, R.L.; Ge, Y.; et al. Landscape context affects the sustainability of organic farming systems. Proc. Natl. Acad. Sci. USA 2020, 117, 2870–2878. [Google Scholar] [CrossRef]
- Michaud, J.P. Problems Inherent to Augmentation of Natural Enemies in Open Agriculture. Neotrop. Entomol. 2018, 47, 161–170. [Google Scholar] [CrossRef]
- Warner, K.D.; Getz, C. A socio-economic analysis of the North American commercial natural enemy industry and implications for augmentative biological control. Biol. Control 2008, 45, 1–10. [Google Scholar] [CrossRef]
- Anonymous. Global Biological Pest Control Market by Manufacturers, Countries, Type and Application, Forecast to 2024; Global Info Research: Hong Kong, China, 2019; 136p. [Google Scholar]
- Van Driesche, R.G.; Heinz, K.M. Biological Control as a Component of IPM Systems. In Biocontrol in Protected Culture; Heinz, K.M., Van Driesche, R.G., Parrella, M.P., Eds.; Ball Publishing: Batavia, IL, USA, 2004; pp. 25–36. [Google Scholar]
- Pilkington, L.J.; Messelink, G.; van Lenteren, J.C.; Le Mottee, K. ‘‘Protected Biological Control”—Biological pest management in the greenhouse industry. Biol. Control 2010, 52, 216–220. [Google Scholar] [CrossRef]
- Collier, T.; van Steenwyk, R. A critical evaluation of augmentative biological control. Biol. Control 2004, 31, 245–256. [Google Scholar] [CrossRef]
- Van Lenteren, J.C. Success in Biological Control of Arthropods by Augmentation of Natural Enemies. In Biological Control: Measures of Success; Gurr, G., Wratten, S., Eds.; Springer: Dordrecht, The Netherlands; Berlin, Germany, 2000; pp. 77–103. [Google Scholar] [CrossRef]
- Goldberger, J.R.; Lehrer, N. Biological control adoption in western U.S. orchard systems: Results from grower surveys. Biol. Control 2016, 102, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Lewis, W.J.; van Lenteren, J.C.; Phatak, S.C.; Tumlinson III, J.H. A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. USA 1997, 94, 12243–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, R.; Warner, K.D.; Johnsson, M.; Wratten, S.D. Economics and adoption of conservation biological control. Biol. Control 2008, 45, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.; Bodwitch, H.; Carah, J.; Daane, K.M.; Getz, C.M.; Grantham, T.E.; Butsic, V. First known survey of cannabis production practices in California. Calif. Agric. 2019, 73, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Salliou, N.; Barnaud, C. Landscape and biodiversity as new resources for agro-ecology? Insights from farmers’ perspectives. Ecol. Soc. 2017, 22, 16. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological control and integrated pest management in organic and conventional systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Rueda, M.R.; Rothbart, M.K. The influence of temperament on the development of coping: The role of maturation and experience. New Dir. Child Adolesc. Dev. 2009, 124, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.D.; Reinhard, D.A.; Westgate, E.C.; Gilbert, D.T.; Ellerbeck, N.; Hahn, C.; Brown, C.L.; Shaked, A. Just think: The challenges of the disengaged mind. Science 2014, 345, 75–77. [Google Scholar] [CrossRef] [Green Version]
- Coll, M.; Wajnberg, E. Environmental Pest Management: Challenges for Agronomists, Economists, and Policymakers; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2017; 448p. [Google Scholar]
- Dufor, R. Farmscaping to Enhance Biological Control; ATTRA, NCAT: Davis, CA, USA, 2000; 37p. [Google Scholar]
- Sustainable Agriculture Network (SAN). A Whole-Farm Approach to Managing Pests; SAN, SARE, USDA-CSREES: Beltsville, MD, USA, 2003; 20p. [Google Scholar]
- Snyder, W.E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 2018, 135, 73–82. [Google Scholar] [CrossRef]
- Pisani Gareau, T.L. Farmscaping for Conservation: Factors that Influence Growers’ Conservation Behavior and the Potential of Hedgerows for Enhancing Biological Control Services. Ph.D. Thesis, University of California, Santa Cruz, CA, USA, 2008. [Google Scholar]
- Brennen, E. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids. Biol. Control 2013, 65, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Brennen, E. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids. Biol. Control 2016, 97, 109–119. [Google Scholar] [CrossRef]
- Zehnder, G. Farmscaping: Making Use of Nature’s Pest Management Services. Available online: https://articles.extension.org/pages/18573/farmscaping:-making-use-of-natures-pest-managementservices (accessed on 14 November 2020).
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; de Tourdonnet, S.; Valantin-Morison, M. Mixing Plant Species in Cropping Systems: Concepts, Tools and Models: A Review. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 43–62. [Google Scholar]
- Bugg, R.L.; Colfer, R.G.; Chaney, W.E.; Smith, H.A.; Cannon, J. Flower Flies (Syrphidae) and Other Biological Control Agents for Aphids in Vegetable Crops; Publication 8285; University of California ANR: Oakland, CA, USA, 2008; 26p. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, A.; Grieshop, M.; Szendrei, Z. Assessing annual and perennial flowering plants for biological control in asparagus. Biol. Control 2018, 127, 1–8. [Google Scholar] [CrossRef]
- Winkler, K.; Wäckers, F.L.; Termorshuizen, A.J.; van Lenteren, J.C. Assessing risks and benefits of floral supplements in conservation biological control. BioControl 2010, 55, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Hogg, B.N.; Bugg, R.L.; Daane, K.M. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol. Control 2011, 56, 76–84. [Google Scholar] [CrossRef]
- Crowder, D.W.; Jabbour, R. Relationships between biodiversity and biological control in agroecosystems: Current status and future challenges. Biol. Control 2014, 75, 8–17. [Google Scholar] [CrossRef]
- Ingrao, A.J.; Schmidt, J.; Jubenville, J.; Grode, A.; Komondy, L.; VanderZee, D.; Szendrei, Z. Biocontrol on the edge: Field margin habitats in asparagus fields influence natural enemy-pest interactions. Agric. Ecosyst. Environ. 2017, 243, 47–54. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, H.R.; Skillman, V.P.; Galindo, G.; Lee, J.C. Floral Resources for Trissolcus japonicus, a Parasitoid of Halyomorpha halys. Insects 2020, 11, 413. [Google Scholar] [CrossRef]
- Van Wert, K. Attractiveness of English thyme (Thymus vulgaris L.) to arthropod natural enemies and its suitability as a dual use resource. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2019. [Google Scholar]
- Tscharntke, T.; Karp, D.S.; Chaplin-Kramer, R.; Batary, P.; DeClerck, F.; Gratton, C.; Hunt, L.; Ives, A.; Jonsson, M.; Larsen, A.; et al. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Conserv. 2016, 204, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Horne, P.A.; Page, J.; Nicholson, C. When will integrated pest management strategies be adopted? Example of the development and implementation of integrated pest management strategies in cropping systems in Victoria. Aust. J. Exp. Agric. 2008, 48, 1601–1607. [Google Scholar] [CrossRef]
- Pyke, B.; Rice, M.; Sabine, B.; Zalucki, M. The push-pull strategy: Behavioural control of Heliothis. Aust. Cotton Grower 1987, 9, 7–9. [Google Scholar]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of push-pull strategies in integrated pest management. Ann. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigenbrode, S.D.; Birch, A.N.E.; Lindzey, S.; Meadow, R.; Snyder, W.E. A mechanistic framework to improve understanding and applications of push-pull systems in pest management. J. Appl. Ecol. 2016, 53, 202–212. [Google Scholar] [CrossRef]
- Depalo, L.; Burgio, G.; von Fragstein, P.; Kristensen, H.L.; Bavec, M.; Robacer, M.; Campanelli, G.; Canali, S. Impact of living mulch on arthropod fauna: Analysis of pest and beneficial dynamics on organic cauliflower (Brassica oleracea L. var. botrytis) in different European scenarios. Renew. Agric. Food Syst. 2016, 32, 240–247. [Google Scholar] [CrossRef]
- Vorsah, R.V.; Dingha, B.N.; Gyawaly, S.; Fremah, S.A.; Sharma, H.; Bhowmik, A.; Worku, M.; Jackai, L.E. Organic Mulch Increases Insect Herbivory by the Flea Beetle Species, Disonycha glabrata, on Amaranthus spp. Insects 2020, 11, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberger, J.; Jones, R.; Miles, C.; Wallace, R.; Inglis, D. Barriers and bridges to the adoption of biodegradable plastic mulches for US specialty crop production. Renew. Agric. Food Syst. 2015, 30, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.; DeVetter, L.; Ghimire, S.; Hayes, D.G. Suitability of Biodegradable Plastic Mulches for Organic and Sustainable Agricultural Production Systems. HortScience 2017, 52, 10–15. [Google Scholar] [CrossRef]
- Razzak, M.A.; Seal, D.R.; Stansly, P.A.; Liburd, O.E.; Schaffer, B. Host Preference and Plastic Mulches for Managing Melon Thrips (Thysanoptera: Thripidae) on Field-Grown Vegetable Crops. Environ. Entomol. 2019, 48, 434–443. [Google Scholar] [CrossRef]
- Gregg, P.C.; Del Socorro, A.P.; Landolt, P.J. Advances in Attract-and-Kill for Agricultural Pests: Beyond Pheromones. Ann. Rev. Entomol. 2018, 63, 453–470. [Google Scholar] [CrossRef]
- Yousef, M.; Aranda-Valera, E.; Quesada-Moraga, E. Lure-and-infect and lure-and-kill devices based on Metarhizium brunneum for spotted wing Drosophila control. J. Pest Sci. 2018, 91, 227–235. [Google Scholar] [CrossRef]
- Lucchi, A.; Loni, A.; Gandini, L.M.; Scaramozzino, P.; Ioriatti, C.; Ricciardi, R.; Schearer, P.W. Using herbivore-induced plant volatiles to attract lacewings, hoverflies and parasitoid wasps in vineyards: Achievements and constraints. Bull. Insectol. 2017, 70, 273–282. [Google Scholar]
- McGhee, P.S.; Epstein, D.L.; Gut, L.J. Quantifying the Benefits of Areawide Pheromone Mating Disruption Programs that Target Codling Moth (Lepidoptera: Tortricidae). Am. Entomol. 2011, 57, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Sumedrea, M.; Marin, F.; Calinescu, M.; Sumedrea, D.; Iorgu, A. Researches regarding the use of mating disruption pheromones in control of apple codling moth (Cydia pomonella L.). Agric. Agric. Sci. Procedia 2015, 9, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Szendrei, Z.; Rodriguez-Saona, C. A meta-analysis of insect pest behavioral manipulation with plant volatiles. Entomol. Exp. Appl. 2010, 134, 201–210. [Google Scholar] [CrossRef]
- Stratton, C.A.; Hodgdon, E.; Rodriquez-Saona, C.; Shelton, A.M.; Chen, Y.H. Odors from phylogenetically-distant plants to Brassicaceae repel an herbivorous Brassica specialist. Nature 2019, 9, 10621. [Google Scholar] [CrossRef]
- Kehat, M.; Anshelevich, L.; Harel, M.; Dunkelblum, E. Control of the codling moth (Cydia pomonella) in apple and pear orchards in Israel by mating disruption. Phytoparasitica 1995, 23, 285–296. [Google Scholar] [CrossRef]
- Orkun, B.; Kovanci, C.S.; Walgenbach, J.F.; Kennedy, G.G. Comparison of Mating Disruption with Pesticides for Management of Oriental Fruit Moth (Lepidoptera: Tortricidae) in North Carolina Apple Orchards. J. Econ. Entomol. 2005, 98, 1248–1258. [Google Scholar]
- Lykouressis, D.; Fantinou, A.; Toutouzas, S.; Perdikis, D.; Samartzis, D. Management of the pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) by mating disruption in cotton fields. Crop Prot. 2005, 24, 177–183. [Google Scholar] [CrossRef]
- Vetter, R.S.; Millar, J.G.; Vickers, N.J.; Baker, T.C. Mating disruption of carob moth, Ectomyelois ceratoniae, with a sex pheromone analog. Southwest Entomol. 2006, 31, 33–47. [Google Scholar]
- Dewhirst, J.; Pickett, A.; Hardie, J. Aphid Pheromones. Vitam. Horm. 2010, 83, 551–574. [Google Scholar]
- Whithouse, S.; Blecker, L. The Safe and Effective Use of Pesticides, 3rd ed.; University of California, ANR: Oakland, CA, USA, 2016; 386p. [Google Scholar]
- Brzozowski, L.; Mazourek, M. A sustainable agricultural future relies on the transition to organic agroecological pest management. Sustainability 2018, 10, 2023. [Google Scholar] [CrossRef] [Green Version]
- Ehn, R.C.; Fox, J.R. A Comparative Analysis of Conventional, Genetically Modified (GM) Crops and Organic Farming Practices and the Role of Pesticides in Each. American Sugarbeet Growers Association. Available online: https://americansugarbeet.org/wp-content/uploads/2019/04/A-Comparative-Analysis-of-Coventional-Genetically-Modified-GM-Crops-and-Organic-Farming-Practices-and-the-Role-of-Pesticides-in-Each.pdf (accessed on 14 November 2020).
- Gomiero, T. Food quality assessment in organic vs. conventional agriculture produce: Findings and issues. Appl. Soil Ecol. 2017, 123, 714–728. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Frisvold, G.B.; Ellsworth, P. Economic value of arthropod biological control. In The Economics of Integrated Pest Management of Insects; Onstad, D.W., Crain, P.R., Eds.; CAB International: Oxon, UK, 2019; pp. 49–85. [Google Scholar]
- Koppert Side Effects Guide. Available online: https://sideeffects.koppert.com/side-effects/ (accessed on 14 November 2020).
- Biobest Group. Side Effect Manual. Available online: https://www.biobestgroup.com/en/side-effect-manual (accessed on 14 November 2020).
- Marrone, P.G. Barriers to adoption of biological control agents and biological pesticides. In Integrated Pest Management; Radcliffe, E.B., Hutchison, W.D., Cancelado, R.E., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 163–178. [Google Scholar]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Markets and Markets. Available online: http://www.marketsandmarkets.com/ (accessed on 14 November 2020).
- Arthurs, S.; Dara, S.K. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.; Lewis, E. Status of entomopathogenic nematodes in integrated pest management strategies in the USA. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Mahfouz, M., Abd-Elgawad, M., Askary, T.H., Coupland, J., Eds.; CAB International: Oxon, UK, 2017; pp. 289–311. [Google Scholar]
- Dara, S.K. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manag. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bahlai, C.; Xue, Y.; McCreary, C.; Schaafsma, A.; Hallett, R. Choosing Organic Pesticides over Synthetic Pesticides May Not Effectively Mitigate Environmental Risk in Soybeans. PLoS ONE 2010, 5, e11250. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C. Mythbusting 101: Organic Farming > Conventional Agriculture. 2011. Available online: https://blogs.scientificamerican.com/science-sushi/httpblogsscientificamericancomscience-sushi20110718mythbusting-101-organic-farming-conventional-agriculture/#9 (accessed on 14 November 2020).
- McGuire, A.M. Agricultural science and organic farming: Time to change our trajectory. Agric. Environ. Lett. 2017, 2, 170024. [Google Scholar] [CrossRef] [Green Version]
- Castle, S.; Naranjo, S.E. Sampling plans, selective insecticides and sustainability: The case for IPM as ‘informed pest management’. Pest Manag. Sci. 2009, 65, 1321–1328. [Google Scholar] [CrossRef]
- Flint, M.L. IPM in Practice; University of California ANR: Oakland, CA, USA, 2012; 292p. [Google Scholar]
- Pedigo, K.P.; Hutchins, S.H.; Higley, L.G. Economic injury levels in theory and practice. Ann. Rev. Entomol. 1986, 31, 341–368. [Google Scholar] [CrossRef]
- Poston, F.L.; Pedigo, L.P.; Welch, S.M. Economic injury levels: Reality and practicality. Am. Entomol. 1983, 29, 49–53. [Google Scholar] [CrossRef]
- IPM World. Available online: https://ipmworld.umn.edu/pedigo (accessed on 14 November 2020).
- Piñero, J.C.; Keay, J. Farming practices, knowledge, and use of integrated pest management by commercial fruit and vegetable growers in Missouri. J. Integr. Pest Manag. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.B.; Tabashnik, B.E.; Johnson, M.W. Larval age affects resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 1995, 88, 788–792. [Google Scholar] [CrossRef]
- Peacock, J.W.; Schweitzer, D.F.; Carter, J.L.; Dubois, N.R. Laboratory assessment of the effects of Bacillus thuringiensis on native Lepidoptera. Environ. Entomol. 1998, 27, 450–457. [Google Scholar] [CrossRef]
- Huang, F.; Buschman, L.L.; Higgins, R.A. Susceptibility of different instars of European corn borer (Lepidoptera: Crambidae) to diet containing Bacillus thuringiensis. J. Econ. Entomol. 1999, 92, 547–550. [Google Scholar] [CrossRef]
- UC ANR: How to Manage Pests. Available online: http://ipm.ucanr.edu/PMG/PESTNOTES/pn74140.html (accessed on 14 November 2020).
- Levy, C. Epidemiology and chemical control of soybean rust in Southern Africa. Plant Dis. 2005, 89, 669–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagamba, F.; Kikulwe, E.; Tushemereirwe, W.K.; Ngambeki, D.; Muhangi, J.; Kagezi, G.H.; Ragama, P.E.; Eden-Green, S. Awareness of banana bacterial wilt control in Uganda: Farmers’ perspective. Afr. Crop Sci. J. 2006, 14, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Liu, W.; Shan, X.; Li, P.; Zhou, J.; Lu, J.; Li, Y. Effects of training on acquisition of pest management knowledge and skills by small vegetable farmers. Crop Prot. 2008, 27, 1504–1510. [Google Scholar] [CrossRef]
- Wright, D.; MacLeod, B.; Hammond, N.; Longnecker, N. Can grain growers and agronomists identify common leaf diseases and biosecurity threats in grain crops? An Australian example. Crop Prot. 2016, 89, 78–88. [Google Scholar] [CrossRef]
- Crop Protection Apps. Available online: https://ohioline.osu.edu/factsheet/fabe-55203 (accessed on 14 November 2020).
- Varley, G.C.; Gradwell, G.R.; Hassell, M.P. Insect Population Ecology: An Analytical Approach; University of California Press: Berkeley, CA, USA, 1974; 212p. [Google Scholar]
- Cardé, R.T.; Minks, A.K. Control of moth pests by mating disruption: Successes and constraints. Ann. Rev. Entomol. 1995, 40, 559–585. [Google Scholar] [CrossRef]
- Phenology Model Database: Codling Moth. Available online: http://ipm.ucanr.edu/PHENOLOGY/ma-codling_moth.html (accessed on 14 November 2020).
- Green Blog: Invasive Species Threaten California’s Economy and Ecology. Available online: https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=30380 (accessed on 14 November 2020).
- SFGate: Officials Call Off Aerial Spray for Apple Moth. Available online: https://www.sfgate.com/news/article/Officials-call-of-aerial-spray-for-apple-moth-3279690.php (accessed on 14 November 2020).
- The Los Angeles Times: Asian Citrus Psyllid Proposal Worries Organic Farmers. Available online: https://www.latimes.com/business/la-fi-pesticides-organic-20141105-story.html (accessed on 14 November 2020).
- Civil Eats: What Happens When Organic Farms Are Forced to Spray Conventional Pesticides? Available online: https://civileats.com/2017/06/21/what-happens-when-organic-farms-are-forced-to-spray-conventional-pesticides/ (accessed on 14 November 2020).
- Citrus Pest & Disease Prevention Program. Available online: https://californiacitrusthreat.org/ (accessed on 14 November 2020).
- Insecticide Resistance Action Committee. Available online: https://irac-online.org (accessed on 14 November 2020).
- Leach, A.B.; Hoepting, C.A.; Nault, B.A. Grower adoption of insecticide resistance management practices increase with extension-based program. Pest Manag. Sci. 2018, 74, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, L.; Grafton-Cardwell, E.E. Citrus Production Manual; University of California, ANR: Oakland, CA, USA, 2014; 433p. [Google Scholar]
- Agricultural Pest Control Advisor. Available online: https://www.cdpr.ca.gov/docs/license/adviser.htm (accessed on 14 November 2020).
- Kerr, N.A. The Legacy, a Centennial History of the State Agricultural Experiment Stations 1887–1987; Missouri Agricultural Experiment Station University of Missouri: Columbia, MO, USA, 1987; 318p. [Google Scholar]
- Hayden-Smith, R.; Surls, R. A century of science and service. Calif. Agric. 2014, 68, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Piñero, J.C.; Paul, K.; Byers, P.; Schutter, J.; Becker, A.; Kelly, D.; Downing, D. Building IPM Capacity in Missouri Through Train-the-Trainer Workshops and Effective Partnerships. J. Integr. Pest Manag. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Schatzberg, M.; Zilberman, D. Valuing the Dissemination of Integrated Pest Management Information in California. ARE Update 2016, 20, 5–8. [Google Scholar]
- Vanzant, J.O. A Modern Tale of the Fox Guarding the Hen House: The Inherent Conflict of Interest That Exists When Pesticide Distributors Employ Pest Control Advisers. San Joaq. Agric. Law Rev. 2015, 24, 247–275. [Google Scholar]
- Gott, R.C.; Coyle, D.R. Educated and engaged communicators are critical to successful integrated pest management adoption. J. Integr. Pest Manag. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Bottrell, D.G.; Schoenly, K.G. Integrated pest management for resource-limited farmers: Challenges for achieving ecological, social and economic sustainability. J. Agric. Sci. 2018, 156, 408–426. [Google Scholar] [CrossRef]
- Ehler, L.E.; Bottrell, D.G. The illusion of integrated pest management. Issues Sci. Technol. 2000, 16, 1–8. [Google Scholar]
- Holt, J.R.; Bernaola, L.; Britt, K.E.; McCullough, C.; Roth, M.; Wagner, J.; Ragozzino, M.; Aviles, L.; Li, Z.; Huval, F.; et al. Synergisms in science: Climate change and integrated pest management through the lens of communication—2019 student debates. J. Insect Sci. 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bouma, J. How to communicate soil expertise more effectively in the information age when aiming at the UN Sustainable Development Goals. Soil Use Manag. 2019, 35, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.; Reed, M.; Skaalsveen, K.; Ingram, J. The use of Twitter for knowledge exchange on sustainable soil management. Soil Use Manag. 2019, 35, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Solis-Toapanta, E.; Kirilenko, A.; Gomez, C. Indoor gardening with hydroponics: A Reddit community analysis to identify knowledge gaps. HortTechnology 2020, 30, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Ruesink, W.G.; Kogan, M. The Quantitative Basis for Pest Management: Sampling and Measuring. In Introduction to Insect Pest Management, 3rd ed.; Metcalf, R.L., Luckmann, W.H., Eds.; Wiley Interscience: New York, NY, USA, 1994; pp. 355–391. [Google Scholar]
- iPM Scout. Available online: https://www.koppertus.com/ipm-app/ (accessed on 14 November 2020).
- Capinera, J.L.; Weissling, T.J.; Schweizer, E.E. Compatibility of intercropping with mechanized agriculture: Effects of strip intercropping of pinto beans and sweet corn on insect abundance in Colorado. J. Econ. Entomol. 1985, 78, 354–357. [Google Scholar] [CrossRef] [Green Version]
- Bellows, T.S.; Meisenbacher, C.; Headrick, D.H. Field biology of Paraleyrodes minei (Homoptera: Aleyrodidae) in southern California. Environ. Entomol. 1998, 27, 277–281. [Google Scholar] [CrossRef]
- Schroeder, J.B.; Ratcliffe, S.T.; Gray, M.E. Effect of four cropping systems on variant western corn rootworm (Coleoptera: Chrysomelidae) adult and egg densities and subsequent larval injury in rotated maize. J. Econ. Entomol. 2005, 98, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Ward, A. Development of a treatment threshold for sucking insects in determinate Bollgard II transgenic cotton grown in winter production areas. Aust. J. Entomol. 2005, 44, 310–315. [Google Scholar] [CrossRef]
- Brainard, D.C.; Bryant, A.; Noyes, D.C.; Haramoto, E.R.; Szendrei, Z. Evaluating pest-regulating services under conservation agriculture: A case study in snap beans. Agric. Ecosyst. Environ. 2016, 235, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Kogan, M.; Gerling, D.; Maddox, J.V. Enhancement of biological control in annual agricultural environments. In Handbook of Biological Control; Bellows, T.S., Fisher, T.W., Eds.; Academic Press: San Diego, CA, USA, 1999; pp. 789–818. [Google Scholar]
- Daane, K.M.; Millar, J.G.; Rice, R.E.; da Silva, P.G.; Bentley, W.J.; Beede, R.H.; Weinberger, G. Stink bugs and leaffooted bugs. In Pistachio Production Manual; Ferguson, L., Haviland, D., Eds.; Publication 3545; University of California ANR: Oakland, CA, USA, 2016; 334p. [Google Scholar]
- UC ANR Degree Day Models. Available online: http://ipm.ucanr.edu/WEATHER/ (accessed on 14 November 2020).
- Decision Aid System. Available online: https://decisionaid.systems/ (accessed on 17 January 2021).
- California Citrus Research Board. Available online: https://www.citrusresearch.org (accessed on 17 January 2021).
- Graebner, L.; Moreno, D.S.; Baritelle, J.L. The Fillmore Citrus Protective District: A success story in integrated pest management. Bull. Entomol. Soc. Am. 1984, 30, 27–233. [Google Scholar] [CrossRef]
- Grafton-Cardwell, E.E.; Headrick, D.H.; Mauk, P.M.; Morse, J.G. Definition and Goals of Citrus IPM. General IPM versus Biologically Based IPM. In Citrus Production Manual; Ferguson, L., Grafton-Cardwell, E.E., Eds.; University of California ANR: Oakland, CA, USA, 2014; 433p. [Google Scholar]
Benefits of Monitoring: |
---|
1. Early detection of pest populations |
2. Determination of location and density |
3. Establishing growth trends |
4. Having a retrievable historical record |
5. Proper timing of cultural, biological and chemical management tactics |
6. Follow-up assessment of efficacy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Headrick, D. The Future of Organic Insect Pest Management: Be a Better Entomologist or Pay for Someone Who Is. Insects 2021, 12, 140. https://doi.org/10.3390/insects12020140
Headrick D. The Future of Organic Insect Pest Management: Be a Better Entomologist or Pay for Someone Who Is. Insects. 2021; 12(2):140. https://doi.org/10.3390/insects12020140
Chicago/Turabian StyleHeadrick, David. 2021. "The Future of Organic Insect Pest Management: Be a Better Entomologist or Pay for Someone Who Is" Insects 12, no. 2: 140. https://doi.org/10.3390/insects12020140
APA StyleHeadrick, D. (2021). The Future of Organic Insect Pest Management: Be a Better Entomologist or Pay for Someone Who Is. Insects, 12(2), 140. https://doi.org/10.3390/insects12020140