The Effect of Dung Beetle Size on Soil Nutrient Mobilization in an Afrotropical Forest
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Dung Beetle Classification
2.3. Mesocosm Design
2.4. Soil Samples
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 2007, 64, 269–285. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F. Soil invertebrates and ecosystem services. Eur. J. Soil. Biol. 2006, 42, 3–15. [Google Scholar] [CrossRef]
- Williams, P.H.; Haynes, R.J. Influence of improved pastures and grazing animals on nutrient cycling within New Zealand soils. N. Z. J. Ecol. 1990, 14, 49–57. [Google Scholar]
- Scholtz, C.H.; Davis, A.L.V.; Kryger, U. Evolutionary Biology and Conservation of Dung Beetles, 1st ed.; Pensoft: Sofia, Bulgaria; Moscow, Russia, 2009; pp. 1–569. [Google Scholar]
- Gillard, P. Coprophagous Beetles in Pasture Ecosystems. J. Aust. Inst. Agric. Sci. 1967, 33, 30–34. [Google Scholar]
- Kakkar, N.; Singh, N.; Mittal, I.C. Effect of habitat on the abundance and diversity of Scarabaeoid Dung beetle (Scarabaeidae) assemblages in India. J. Ent. Res. 2008, 32, 323–328. [Google Scholar]
- Beynon, S.A.; Wainwright, W.A.; Christie, M. The application of an ecosystem services framework to estimate the economic value of dung beetles to the U.K. cattle industry. Ecol. Entomol. 2015, 40, 124–135. [Google Scholar] [CrossRef]
- Bang, S.H.; Lee, J.H.; Oh, S.K.; Young, E.N.; Yong, S.J.; Won, H.K. Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Appl. Soil. Ecol. 2005, 29, 165–171. [Google Scholar] [CrossRef]
- Yoshihara, Y.; Sato, S. The relationship between dung beetle species richness and ecosystem functioning. Appl. Soil. Ecol. 2015, 88, 21–25. [Google Scholar] [CrossRef]
- Doube, B.M. A functional classification for analysis of the structure of dung beetle assemblages. Ecol. Entomol. 1990, 15, 371–383. [Google Scholar] [CrossRef]
- Feer, F.; Pincebourde, S. Diel flight activity and ecological segregation within an assemblage of tropical forest dung and carrion beetles. J. Trop. Ecol. 2005, 21, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Bui, V.B.; Ziegler, T.; Bonkowski, M. Morphological traits reflect dung beetle response to land use changes in tropical karst ecosystems of Vietnam. Ecol. Indic. 2020, 108, 105–697. [Google Scholar] [CrossRef]
- Frank, K.; Hülsmann, M.; Assmann, T.; Schmitt, T.; Blüthgen, N. Land use affects dung beetle communities and their ecosystem service in forests and grasslands. Agric. Ecosyst. Environ. 2017, 243, 114–122. [Google Scholar] [CrossRef]
- Nervo, B.; Tocco, C.; Caprio, E.; Palestrini, C.; Rolando, A. The Effects of Body Mass on Dung Removal Efficiency in Dung Beetles. PLoS ONE 2014, 9, e107699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanbrook, R.; Wheater, C.P.; Harris, W.E.; Jones, M. Habitat type and altitude work in tandem to drive the community structure of dung beetles in Afromontane forest. J. Insect Conserv. 2021, 25, 1–15. [Google Scholar] [CrossRef]
- Lambrechts, C.; Woodley, B.; Church, C.; Gachanja, M. Aerial survey of the destruction of the Aberdare Range forests. UNEP. Div. Early Warn. Assess. 2003, 35, 1–27. [Google Scholar]
- Mugendi, D.; Mucheru-Muna, M.; Mugwe, J.; Kung’u, J.; Bationo, A. Improving food production using “best bet” soil fertility technologies in the Central highlands of Kenya. Adv. Integr. Soil Fertil Manag. Sub-Sahar. Afr. Chall. Oppor. 2007, 1996, 345–351. [Google Scholar]
- Orgiazzi, A.; Bardgett, R.D.; Barrios, E.; Behan-Pelletier, V.; Briones, M.J.I.; Chotte, J.-L. Global Soil biodiversity Atlas; European Commission: Luxembourg, 2016; 176p. [Google Scholar]
- Kingston, T.J.; Coe, M. The biology of a giant dung beetle (Heliocopris dilloni) (Coleoptera: Scarabaeidae). J. Zool. 1977, 181, 243–263. [Google Scholar] [CrossRef]
- Mehlich, A. Communications in Soil Science and Plant Analysis Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil. Sci. Plant Anal. 1984, 15, 37–41. [Google Scholar] [CrossRef]
- Watson, M.E.; Galliher, T.L. Comparison of Dumas and Kjeldahl methods with automatic analyzers on agricultural samples under routine rapid analysis conditions. Commun. Soil. Sci. Plant Anal. 2001, 32, 2007–2019. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Heisterkamp, S.; Van Willigen, B. nlme: Linear and Nonlinear Mixed Effects Models. R Package 3rd Edn 2017, 1–336. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.r-project.org/ (accessed on 8 August 2019).
- Nicholson, M.J. Soils and land Use on the Northern Foothills of the Aberdare Range, Kenya. Ph.D. Thesis, University of Aberdeen, Aberdeen, Scotland, 1976. [Google Scholar]
- Hogg, D.E. A lysimeter study of nutrient losses from urine and dung applications on pasture. N. Z. J. Exp. Agric. 1981, 9, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.S.; Mamo, M.; Wingeyer, A.; Schacht, W.H.; Eskridge, K.M.; Bradshaw, J. Soil Fauna Accelerate Dung Pat Decomposition and Nutrient Cycling into Grassland Soil. Rangel. Ecol. Manag. 2019, 72, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Yokohama, K.; Kai, H.; Koga, T.; Aibe, T. Nitrogen Mineralization and Microbial Populations in Cow Dung Balls And Underlying Soil Affected By Paracoprid Dung Beetles. Soil Biol. Biochem. 1991, 23, 649–653. [Google Scholar]
- Yamada, D.; Imura, O.; Shi, K.; Shibuya, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassl. Sci. 2007, 53, 121–129. [Google Scholar] [CrossRef]
- Pokorný, S.; Zidek, J.; Werner, K. Giant Dung Beetles of the Genus Heliocopris; Taita Publishers: Hradec Králové, Czech Republic, 2009; pp. 1–136. [Google Scholar]
- Klemperer, H.G.; Boulton, R. Brood burrow construction and brood care by Heliocopris japetus (Klug) and Heliocopris hamadryas (Fabricius) (Coleoptera, Scarabaeidae). Ecol. Entomol. 1976, 1, 19–29. [Google Scholar] [CrossRef]
- Stanbrook, R. Dung relocation behavior in three sympatric African Heliocopris Hope Dung Beetle Species (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt. Bull. 2020, 74, 1–3. [Google Scholar] [CrossRef]
- Davis, A.L.V. The Red List of Threatend Species: Heliocopris Japetus. Available online: https://dx.doi.org/10.2305/IUCN.UK.2013-2.RLTS.T137198A521331.en (accessed on 16 December 2020).
- Rosenlew, H.; Roslin, T. Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos 2008, 117, 1659–1666. [Google Scholar] [CrossRef]
- Barbero, E.; Palestrini, C.; Rolando, A. Dung beetle conservation: Effects of habitat and resource selection (Coleoptera: Scarabaeoidea). J. Insect Conserv. 1999, 3, 75–84. [Google Scholar] [CrossRef]
- Lobo, J.M.; Lumaret, J.; Jay-Robert, P. Diversity, distinctiveness and conservation status of the Mediterranean coastal dung beetle assemblage in the Regional Natural Park of the Camargue (France). Divers. Distrib. 2001, 7, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Barlow, J.; Gardner, T.; Araujo, I.S.; Avila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, T.H.; Williams, N.M.; Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 2005, 8, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Bogoni, J.A.; Graipel, M.E.; de Castilho, P.V.; Fantacini, F.M.; Kuhnen, V.V.; Luiz, M.R. Contributions of the mammal community, habitat structure, and spatial distance to dung beetle community structure. Biodivers Conserv. 2016, 25, 1661–1675. [Google Scholar] [CrossRef]
- Slade, E.M.; Mann, D.J.; Villanueva, J.F.; Lewis, O.T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 2007, 76, 1094–1104. [Google Scholar] [CrossRef]
- Holter, P.; Scholtz, C.H.; Wardhaugh, K.G. Dung feeding in adult scarabaeines (tunnellers and endocoprids): Even large dung beetles eat small particles. Ecol. Entomol. 2002, 27, 169–176. [Google Scholar] [CrossRef]
- Holter, P. Herbivore dung as food for dung beetles: Elementary coprology for entomologists. Ecol. Entomol. 2016, 41, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Soliveres, S.; van der Plas, F.; Manning, P.; Prati, D.; Gossner, M.M.; Renner, S.C. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nat. Publ. Gr. 2016, 536, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Séguin, A.; Harvey, É.; Archambault, P.; Nozais, C.; Gravel, D.; Naeem, S. Body size as a predictor of species loss effect on ecosystem functioning. Sci. Rep. 2014, 9, 1537–1552. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Purvis, A.; Cornelissen, J.H.C.; Mace, G.M.; Donoghue, M.J.; Ewers, R.M. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 2013, 3, 2958–2975. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.A.; Shepherd, K.D.; Soule, M.J.; Place, F.M.; Buresh, R.J.; Izac, A.N. Soil Fertility Replenishment in Africa: An Investment in Natural Resource Capital Pedro. SSSA Spec. Publ. 1997, 51, 1–47. [Google Scholar]
- Mulinge, W.; Gicheru, P.; Murithi, F.; Maingi, P.; Kihiu, E.; Kirui, O.K. Economics of Land Degradation and Improvement in Kenya. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 471–498. [Google Scholar]
- Eisenhauer, N.; Schielzeth, H.; Barnes, A.D.; Barry, K.; Brose, U.; Bruelheide, H. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 2019, 61, 1–54. [Google Scholar] [CrossRef]
- Thompson, P.L.; Isbell, F.; Loreau, M.; O’connor, M.I.; Gonzalez, A. The strength of the biodiversity-ecosystem function relationship depends on spatial scale. Proc. R Soc. B Biol. Sci. 2018, 285, 1–9. [Google Scholar] [CrossRef] [Green Version]
Treatment | Body Size (mm) | Genera | Number of Individuals per Genera | Proportion of Genera in Treatment (%) |
---|---|---|---|---|
Large | >25 | Heliocopris | 2 | 100 |
Medium | >15 and <25 | Onitis | 8 | 80 |
Diastellopalpus | 4 | 15 | ||
Copris | 6 | 5 | ||
Small | >5 and <15 | Onthophagus | 16 | 70 |
Milichus | 22 | 10 | ||
Oniticellus | 6 | 12 | ||
Liatongus | 8 | 6 | ||
Euoniticellus | 12 | 1 | ||
Caccobius | 6 | 1 |
Nutrient | Treatment | Time | ||
---|---|---|---|---|
F (df) | p | F (df) | p | |
N | 4.61 (3, 15) | 0.01 * | 8.31 (3, 39) | 0.001 * |
C | 4.84 (3, 15) | 0.01 * | 10.16 (3, 39) | 0.01 * |
P | 10.68 (3, 15) | <0.001 * | 0.36 (3, 39) | <0.05 * |
K | 14.17 (3, 15) | <0.001 * | 21.76 (3, 39) | <0.001 * |
Nutrient | ||||||||
---|---|---|---|---|---|---|---|---|
Treatment Level Compared to Baseline | N | C | P | K | ||||
Estimate | p | Estimate | p | Estimate | p | Estimate | p | |
Small | 0.09 | 0.19 | 1.67 | 0.07 | 0.75 | 0.01 * | 75.33 | 0.01 * |
Medium | 0.13 | 0.08 | 2.56 | 0.01 * | 1.21 | 0.003 * | 92.54 | <0.001 * |
Large | 0.26 | 0.002 * | 3.14 | <0.001 * | 1.63 | <0.001 * | 118.72 | 0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanbrook, R.; Harris, E.; Jones, M.; Wheater, C.P. The Effect of Dung Beetle Size on Soil Nutrient Mobilization in an Afrotropical Forest. Insects 2021, 12, 141. https://doi.org/10.3390/insects12020141
Stanbrook R, Harris E, Jones M, Wheater CP. The Effect of Dung Beetle Size on Soil Nutrient Mobilization in an Afrotropical Forest. Insects. 2021; 12(2):141. https://doi.org/10.3390/insects12020141
Chicago/Turabian StyleStanbrook, Roisin, Edwin Harris, Martin Jones, and Charles Philip Wheater. 2021. "The Effect of Dung Beetle Size on Soil Nutrient Mobilization in an Afrotropical Forest" Insects 12, no. 2: 141. https://doi.org/10.3390/insects12020141
APA StyleStanbrook, R., Harris, E., Jones, M., & Wheater, C. P. (2021). The Effect of Dung Beetle Size on Soil Nutrient Mobilization in an Afrotropical Forest. Insects, 12(2), 141. https://doi.org/10.3390/insects12020141