Physical Methods for Electrical Trap-and-Kill Fly Traps Using Electrified Insulated Conductors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect
2.2. EF Production
2.3. Interception of the Flow of Electric Current Generated by Silent Discharge of the N-PIP
2.4. Attraction of Flies to the N-PIP of the EFP
2.5. Measurement of Electric Current from the Attracted Houseflies
2.6. Ascertainment of Fly Mortality following Capture by the N-PIP
2.7. Statistical Analysis
3. Results and Discussion
3.1. Interception of Electricity Released from the N-PIP by the Insulator Spacer
3.2. Attraction of Houseflies to the N-PIP
3.3. Electric Current Generation by a Housefly Attracted to the N-PIP
3.4. Release of Negative Electricity from the Insect Body Was the Primary Cause of Death of Captured Houseflies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Toyoda, H.; Matsuda, Y. Basic concept for constructing an electric field screen. In Electric Field Screen; Principles and Applications; Toyoda, H., Ed.; Nobunkyo Production: Tokyo, Japan, 2015; pp. 3–17. [Google Scholar]
- Tanaka, N.; Matsuda, Y.; Kato, E.; Kokabe, K.; Furukawa, T.; Nonomura, T.; Honda, K.; Kusakari, S.; Imura, T.; Kimbara, J.; et al. An electric dipolar screen with oppositely polarized insulators for excluding whiteflies from greenhouses. Crop Prot. 2008, 27, 215–221. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. Insects are electrified in an electric field by deprivation of their negative charge. Ann. Appl. Biol. 2012, 160, 250–259. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Kasaishi, Y.; Kusakari, S.; Toyoda, H. A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop Prot. 2011, 30, 155–162. [Google Scholar] [CrossRef]
- Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. An oppositely charged insect exclusion screen with gap-free multiple electric fields. J. Appl. Phys. 2012, 112, 116103. [Google Scholar] [CrossRef] [Green Version]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Sekoguchi, D.; Nonomura, T.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field screen prevents captured insects from escaping by depriving bioelectricity generated through insect movements. J. Electrost. 2012, 70, 207–211. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Electrostatic measurement of dischargeable electricity and bioelectric potentials produced by muscular movements in flies. J. Electrost. 2014, 72, 1–5. [Google Scholar] [CrossRef]
- Matsuda, Y.; Takikawa, Y.; Kakutani, K.; Nonomura, T.; Toyoda, H. Analysis of pole-ascending-descending action by insects subjected to high voltage electric fields. Insects 2020, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Safe housing ensured by an electric field screen that excludes insect-net permeating haematophagous mosquitoes carrying human pathogens. J. Phys. Conf. Ser. 2015, 646, 0120021–0120024. [Google Scholar] [CrossRef] [Green Version]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy. Eur. J. Plant Pathol. 2012, 134, 661–670. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Toyoda, H. Practical application of an electric field screen to an exclusion of flying insect pests and airborne conidia from greenhouses with a good air penetration. J. Agric. Sci. 2012, 4, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kusakari, S.; Okada, K.; Toyoda, H. An electrostatic nursery shelter for raising pest and pathogen free tomato seedlings in an open-window greenhouse environment. J. Agric. Sci. 2016, 8, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, Y.; Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kusakari, S.; Okada, K.; Kimbara, J.; Osamura, K.; Toyoda, H. Electrostatic insect sweeper for eliminating whiteflies colonizing host plants; a complementary pest control device in an electric field screen-guarded greenhouse. Insects 2015, 6, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, T.; Toyoda, H. Soil surface-trapping of tomato leaf-miner flies emerging from underground pupae with a simple electrostatic cover of seedbeds in a greenhouse. Insects 2020, 11, 878. [Google Scholar] [CrossRef] [PubMed]
- Halliday, D.; Resnick, R.; Walker, J. Electric discharge and electric fields. In Fundamentals of Physics; Johnson, S., Ford, E., Eds.; John Wiley & Sons: New York, NY, USA, 2005; pp. 561–604. [Google Scholar]
- Griffith, W.T. Electrostatic phenomena. In The Physics of Everyday Phenomena, a Conceptual Introduction to Physics; Bruflodt, D., Loehr, B.S., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 232–252. [Google Scholar]
- Jones, E.; Childers, R. Electric charge and electric field. In Physics, 3rd ed.; McGraw-Hill: Boston, MD, USA, 2002; pp. 495–525. [Google Scholar]
- Kusakari, S.; Okada, K.; Shibao, M.; Toyoda, H. High voltage electric fields have potential to create new physical pest control systems. Insects 2020, 11, 447. [Google Scholar] [CrossRef] [PubMed]
- Takikawa, Y.; Takami, T.; Kakutani, K. Body water-mediated conductivity actualizes the insect-control functions of electric fields in houseflies. Insects 2020, 11, 561. [Google Scholar] [CrossRef] [PubMed]
- Izumi, N.; Sajiki, J. Effects of bisphenol A (BPA) on sex ratio of a housefly. Bull. Public Health Lab. Chiba Prefect. 2003, 27, 14–17. [Google Scholar]
- Dubendorfer, A.; Hediger, M.; Burghardt, G.; Bopp, D. Musca domestica, a window on the evolution of sex-determining mechanisms in insects. Int. J. Dev. Biol. 2002, 46, 75–79. [Google Scholar]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Well, J., Blumet, D., Felsenfeld, S., Martin, T., Rappaport, A., Wagner, C., Lai, B., Taylor, R., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Electric field screen structures. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 9–15. [Google Scholar]
- Kaiser, K.L. Air breakdown. In Electrostatic Discharge; Kaiser, K.L., Ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 1–93. [Google Scholar]
- Extend Office Technology Inc. Calculate Area under a Plotted Curve with Trapezoidal Rule. Available online: https://www.extendoffice.com/documents/excel/5898-excel-calculate-area-under-plotted-curve.html (accessed on 12 January 2022).
- Matsuda, Y.; Shimizu, K.; Sonoda, T.; Takikawa, Y. Use of electric discharge for simultaneous control of weeds and houseflies emerging from soil. Insects 2020, 11, 861. [Google Scholar] [CrossRef]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Basic knowledge in electrostatics. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 1–7. [Google Scholar]
- Ishay, J.S.; Shimony, T.B.; Shalom, A.B.; Kristianpoller, N. Photovoltaic effects in the oriental hornet. Vespa Orient. J. Insect Physiol. 1992, 38, 37–48. [Google Scholar] [CrossRef]
- McGonigle, D.G.; Jackson, C.W. Effect of surface material on electrostatic charging of houseflies (Musca domestica L). Pest Manag. Sci. 2002, 58, 374–380. [Google Scholar] [CrossRef] [PubMed]
- McGonigle, D.G.; Jackson, C.W.; Davidson, J.L. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrost. 2002, 54, 167–177. [Google Scholar] [CrossRef]
- Honna, T.; Akiyama, Y.; Morishima, K. Demonstration of insect-based power generation using a piezoelectric fiber. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 151, 460. [Google Scholar] [CrossRef]
- Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 2010, 40, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Jonassen, N. Electrostatic effects and abatement of static electricity. In Electrostatics, 2nd ed.; Jonassen, N., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 75–120. [Google Scholar]
Area (mm2) of Non-Closed Surface of the N-PIP | Magnitude (µA) of Electric Current Generated by Silent Discharge of the N-PIP | |||||||
---|---|---|---|---|---|---|---|---|
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 a | |
2000 (no spacer, control) | 0 b | 1.6 ± 0.5 | 22.7 ± 2.7 | 56.2 ± 1.3 | 89.5 ± 1.2 | 121.1 ± 1.1 | 151.7 ± 5.8 | 186.6 ± 2.3 |
1600 | 0 | 1.2 ± 0.3 | 18.1 ± 1.2 | 45.1 ± 0.6 | 72.2 ± 0.8 | 97.7 ± 1.0 | 122.2 ± 4.4 | 150.1 ± 1.3 |
1200 | 0 | 1.1 ± 0.2 | 14.1 ± 1.3 | 34.5 ± 1.1 | 54.7 ± 1.3 | 72.9 ± 0.9 | 93.3 ± 3.4 | 113.0 ± 1.3 |
1000 | 0 | 0.5 ± 0.1 | 11.8 ± 1.0 | 28.8 ± 0.6 | 44.9 ± 0.8 | 61.3 ± 0.8 | 78.1 ± 1.8 | 94.0 ± 1.1 |
800 | 0 | 0 | 9.4 ± 0.9 | 22.9 ± 0.6 | 36.2 ± 0.8 | 48.5 ± 0.8 | 62.1 ± 1.3 | 75.4 ± 0.7 |
600 | 0 | 0 | 1.9 ± 0.9 | 16.8 ± 0.7 | 26.4 ± 0.8 | 36.4 ± 0.4 | 45.5 ± 1.6 | 56.5 ± 0.7 |
400 | 0 | 0 | 0 | 0 | 4.6 ± 0.5 | 17.4 ± 0.7 | 24.4 ± 0.4 | 30.1 ± 1.2 |
200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sex | Age 1 | Voltage (-kV) Applied to the PIP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 | 10 | 12 | 15 | ||
Male | 7 | n.a. 2 | 2.6 ± 0.7 a | 4.1 ± 0.3 a | 5.2 ± 0.4 a | 6.9 ± 0.3 a | 7.8 ± 0.6 a | n.a.e. 3 | n.a.e. | n.a.e. | n.a.e. |
14 | n.a. | 2.7 ± 0.8 a | 4.2 ± 0.4 a | 5.3 ± 0.5 a | 6.8 ± 0.4 a | 7.7 ± 0.5 a | n.a.e. | n.a.e. | n.a.e. | n.a.e. | |
21 | n.a. | 2.4 ± 0.7 a | 4.5 ± 0.5 a | 5.4 ± 0.5 a | 6.9 ± 0.6 a | 7.9 ± 0.6 a | n.a.e | n.a.e. | n.a.e. | n.a.e. | |
Female | 7 | n.a. | n.a. | 3.1 ± 0.3 b | 3.7 ± 0.5 b | 5.3 ± 0.5 b | 5.9 ± 0.3 b | n.a.e. | n.a.e. | n.a.e. | n.a.e. |
14 | n.a. | n.a. | 3.2 ± 0.4 b | 3.6 ± 0.5 b | 5.4 ± 0.5 b | 5.9 ± 0.6 b | n.a.e. | n.a.e. | n.a.e. | n.a.e. | |
21 | n.a. | n.a. | 3.3 ± 0.5 b | 3.5 ± 0.5 b | 5.2 ± 0.4 b | 5.9 ± 0.6 b | n.a.e. | n.a.e. | n.a.e. | n.a.e. |
Sex | Age 1 | Magnitude (µA) of Electric Current | Duration (min) of Electric Current Generation | ||||||
---|---|---|---|---|---|---|---|---|---|
8 | 10 | 12 | 15 2 | 8 | 10 | 12 | 15 2 | ||
Male | 7 | 4.9 ± 0.4 a | 9.2 ± 0.2 a | 13.4 ± 0.3 a | 27.6 ± 1.5 a | 6.4 ± 0.3 a | 10.6 ± 0.4 a | 15.3 ± 0.4 a | 28.3 ± 0.5 a |
14 | 4.8 ± 0.1 a | 9.3 ± 0.2 a | 13.9 ± 0.2 a | 27.8 ± 1.2 a | 6.1 ± 0.3 a | 10.5 ± 0.3 a | 15.6 ± 0.3 a | 28.7 ± 0.6 a | |
21 | 4.7 ± 0.3 a | 9.1 ± 0.3 a | 13.8 ± 0.2 a | 27.0 ± 1.6 a | 6.2 ± 0.2 a | 10.7 ± 0.5 a | 15.9 ± 0.5 a | 28.2 ± 0.4 a | |
Female | 7 | 6.3 ± 0.2 b | 11.8 ± 0.2 b | 16.8 ± 0.5 b | 35.0 ± 1.3 b | 7.8 ± 0.2 b | 12.5 ± 0.1 b | 17.7 ± 0.3 b | 32.1 ± 0.4 b |
14 | 6.3 ± 0.1 b | 11.9 ± 0.3 b | 16.6 ± 0.2 b | 35.8 ± 1.2 b | 7.9 ± 0.5 b | 12.2 ± 0.3 b | 17.5 ± 0.4 b | 32.0 ± 0.5 b | |
21 | 6.2 ± 0.3 b | 11.7 ± 0.2 b | 16.5 ± 0.4 b | 35.1 ± 1.4 b | 8.1 ± 0.6 b | 12.1 ± 0.2 b | 17.8 ± 0.2 b | 32.3 ± 0.6 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuda, Y.; Nonomura, T.; Toyoda, H. Physical Methods for Electrical Trap-and-Kill Fly Traps Using Electrified Insulated Conductors. Insects 2022, 13, 253. https://doi.org/10.3390/insects13030253
Matsuda Y, Nonomura T, Toyoda H. Physical Methods for Electrical Trap-and-Kill Fly Traps Using Electrified Insulated Conductors. Insects. 2022; 13(3):253. https://doi.org/10.3390/insects13030253
Chicago/Turabian StyleMatsuda, Yoshinori, Teruo Nonomura, and Hideyoshi Toyoda. 2022. "Physical Methods for Electrical Trap-and-Kill Fly Traps Using Electrified Insulated Conductors" Insects 13, no. 3: 253. https://doi.org/10.3390/insects13030253
APA StyleMatsuda, Y., Nonomura, T., & Toyoda, H. (2022). Physical Methods for Electrical Trap-and-Kill Fly Traps Using Electrified Insulated Conductors. Insects, 13(3), 253. https://doi.org/10.3390/insects13030253