Cryptic Species Exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from Studies of Complete Mitochondrial Genomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Morphological Identification
2.2. DNA Extraction, PCR Amplification, and Sequencing
2.3. Mitochondrial Genome Annotation and Sequence Analyses
2.4. Phylogenetic Analyses
2.5. Divergence Time Estimation
3. Results
3.1. Mitochondrial Genome Composition
3.2. Analysis of Genetic Distance
3.3. Heterogeneous Sequences Divergence and Phylogenetic Analyses
3.4. Divergence Time Estimation
4. Discussion
4.1. Comparison of Mitochondrial Genome Composition
4.2. Phylogenetic Analyses of Vietnamellidae within Ephemeroptera
4.3. Identification of Cryptic Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avise, J.C.; Arnold, J.; Ball, R.M.; Bermingham, E.; Lamb, T.; Neigel, J.E.; Reeb, C.A.; Saunders, N.C. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 1987, 18, 489–522. [Google Scholar] [CrossRef]
- Salvato, P.; Simonato, M.; Battisti, A.; Negrisolo, E. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae). BMC Genom. 2008, 9, 331. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.Y.; Cai, Y.Y.; Yu, D.; Zhang, J.Y. Characteristics of the complete mitochondrial genome of Suhpalacsa longialata (Neuroptera, Ascalaphidae) and its phylogenetic implications. PeerJ 2018, 6, e5914. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Zhang, L.P.; Yu, D.; Zheng, R.Q. Complete mitochondrial genomes of Nanorana taihangnica and N. yunnanensis (Anura: Dicroglossidae) with novel gene arrangements and phylogenetic relationship of Dicroglossidae. BMC Evol. Biol. 2018, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.N.; Zhang, J.Y.; Peng, L.; Zheng, R.Q.; Shao, C. Do cryptic species exist in Hoplobatrachus rugulosus? An examination using four nuclear genes, the Cyt b gene and the complete mt genome. PLoS ONE 2015, 10, e0124825. [Google Scholar] [CrossRef]
- Xu, X.D.; Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Cai, Y.Y.; Yu, D.N.; Zhang, J.Y. Insight into the phylogenetic relationships among three subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with low-temperature selection pressure analyses using mitogenomes. Insects 2021, 12, 656. [Google Scholar] [CrossRef]
- Ye, Q.M.; Zhang, S.S.; Cai, Y.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Isonychia kiangsinensis (Ephemeroptera: Isonychiidae). Mitochondrial DNA Part B 2018, 3, 541–542. [Google Scholar] [CrossRef] [Green Version]
- Grillo, V.; Jackson, F.; Cabaret, J.; Gilleard, J.S. Population genetic analysis of the ovine parasitic nematode Teladorsagia circumcincta and evidence for a cryptic species. Int. J. Parasitol. 2007, 37, 435–447. [Google Scholar] [CrossRef]
- Barber, J.H.M.; Zrelli, S.; Yanai, Z.; Sartori, M. A reassessment of the genus Oligoneuriopsis Crass, 1947 (Ephemeroptera, Oligoneuriidae, Oligoneuriellini). ZooKeys 2020, 985, 15–47. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Gao, Y.J.; Zhang, L.P.; Yu, D.N.; Zhang, J.Y. The mitochondrial genome of Caenis sp. (Ephemeroptera: Caenidae) and the phylogeny of Ephemeroptera in Pterygota. Mitochondrial DNA Part B 2018, 3, 577–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.S.; Xu, X.D.; Jia, Y.Y.; Guan, J.Y.; Zhang, J.Y. The complete mitochondrial genome of Choroterpides apiculata (Ephemeroptera: Leptophlebiidae) and its phylogenetic relationships. Mitochondrial DNA Part B 2020, 5, 1159–1160. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.D.; Jia, Y.Y.; Cao, S.S.; Zhang, Z.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Six complete mitochondrial genomes of mayflies from three genera of Ephemerellidae (Insecta: Ephemeroptera) with inversion and translocation of trnI rearrangement and their phylogenetic relationships. PeerJ 2020, 8, e9740. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Xu, X.D.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Choroterpes (Euthralus) yixingensis (Ephemeroptera: Leptophlebiidae) and its mitochondrial protein-coding gene expression under imidacloprid stress. Gene 2021, 800, 145833. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Guan, J.Y.; Cao, Y.R.; Dai, X.Y.; Yu, D.N.; Zhang, J.Y. Mitogenome analysis of four Lamiinae species (Coleoptera: Cerambycidae) and gene expression responses by Monochamus alternatus when infected with the parasitic nematode, Bursaphelenchus mucronatus. Insects 2021, 12, 453. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Luu, B.E.; Yu, D.N.; Zhang, L.P.; Al-Alattar, R.; Storey, K.B. The complete mitochondrial genome of Dryophytes versicolor: Phylogenetic relationship among Hylidae and mitochondrial protein-coding gene expression in response to freezing and anoxia. Int. J. Biol. Macromol. 2019, 132, 461–469. [Google Scholar] [CrossRef]
- Winker, K. Sibling species were first recognized by William Derham (1718). Auk 2005, 122, 706–707. [Google Scholar] [CrossRef]
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.L.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef]
- Jacobus, L.M.; Macadam, C.R.; Sartori, M. Mayflies (Ephemeroptera) and their contributions to ecosystem services. Insects 2019, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Barber-James, H.M.; Gattolliat, J.L.; Sartori, M.; Hubbard, M. Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia 2008, 595, 339–350. [Google Scholar] [CrossRef]
- Elliott, J.M.; Humpesch, U.H.; Macan, T.T. Larvae of the British Ephemeroptera: A key with ecological notes. Sci. Publ. Freshw. Biol. Assoc. 1988, 49, 1–145. [Google Scholar]
- Burian, S.K. Ephemeroptera (Mayflies). Encycl. Inland Waters 2009, 299–314. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D.N. Bold: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mccafferty, W.P.; Edmunds, G.F. The higher classification of the Ephemeroptera and its evolutionary basis. Ann. Entomol. Soc. Am. 1979, 72, 5–12. [Google Scholar] [CrossRef]
- Mccafferty, W.P. Toward a phylogenetic classification of the Ephemeroptera (Insecta): A commentary on systematics. Ann. Entomol. Soc. Am. 1991, 4, 343–360. [Google Scholar] [CrossRef]
- Kluge, N.J. The Phylogenetic System of Ephemeroptera (the First Experience in Consistently Non-Ranking Taxonomy); Kluwer Academic Publishers: Norwell, MA, USA, 2004; 442p. [Google Scholar]
- Ogden, T.H.; Whiting, M.F. Phylogeny of Ephemeroptera (mayflies) based on molecular evidence. Mol. Phylogenet. Evol. 2005, 37, 625–643. [Google Scholar] [CrossRef]
- Ogden, T.H.; Gattolliat, J.L.; Sartori, M.; Staniczek, A.H.; Soldán, T.; Whiting, M.F. Towards a new paradigm in mayfly phylogeny (Ephemeroptera): Combined analysis of morphological and molecular data. Syst. Entomol. 2009, 34, 616–634. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, B.C.; Jockusch, E.L. Phylogenetic relationships of leptophlebiid mayflies as inferred by histone H3 and 28S ribosomal DNA. Syst. Entomol. 2008, 33, 651–667. [Google Scholar] [CrossRef]
- Tschernova, O.A. Some new Asiatic species of mayflies (Ephemoroptera, Heptageniidae, Ephemerellidae). Entomol. Rev. (Engl. Transl.) 1972, 51, 604–614. [Google Scholar]
- Selvakumar, C.; Sinha, B.; Vasanth, M.; Subramanian, K.A.; Sivaramakrishnan, K.G. A new record of monogeneric family Vietnamellidae (Insecta: Ephemeroptera) from India. J. Asia Pac. Entomol. 2018, 21, 994–998. [Google Scholar] [CrossRef]
- Mccafferty, W.P.; Wang, T.Q. Phylogenetic systematics of the family Teloganodidae (Ephemeroptera: Pannota). Ann. Cape Prov. Mus. 1997, 19, 387–437. [Google Scholar]
- Wang, M. Phylogenetic systematics of the major lineages of Pannote mayflies (Ephemeroptera: Pannota). Trans. Am. Entomol. Soc. 2000, 126, 9–101. [Google Scholar]
- Jacobus, L.M.; Mccafferty, W.P. Reevaluation of the phylogeny of the Ephemeroptera infraorder Pannota (Furcatergalia), with adjustments to higher classification. Trans. Am. Entomol. Soc. 2006, 132, 81–90. [Google Scholar]
- Hu, Z.; Ma, Z.X.; Luo, J.Y.; Zhou, C.F. Redescription and commentary on the Chinese mayfly Vietnamella sinensis (Ephemeroptera: Vietnamellidae). Zootaxa 2017, 4286, 381–390. [Google Scholar] [CrossRef] [Green Version]
- You, D.S.; Su, C.R. A new species of Vietnamella from China (Ephemeroptera: Ephemerellidae). Acta Zool. 1987, 12, 176–180. [Google Scholar]
- Auychinda, C.; Jacobus, L.M.; Sartori, M.; Boonsoong, B. A new species of Vietnamella Tshernova 1972 (Ephemeroptera: Vietnamellidae) from Thailand. Insects 2020, 11, 554. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, J.; Wang, L.; Shu, Z.; Tong, X. Vietnamella chebalingensis, a new species of the family Vietnamellidae (Ephemeroptera) from China based on morphological and molecular data. Zootaxa 2020, 4868, 208–220. [Google Scholar] [CrossRef]
- Li, R.; Zhang, W.; Ma, Z.X.; Zhou, C.F. Novel gene rearrangement pattern in the mitochondrial genomes of Torleya mikhaili and Cincticostella fusca (Ephemeroptera: Ephemerellidae). Int. J. Biol. Macromol. 2020, 165, 3106–3114. [Google Scholar] [CrossRef]
- Li, R.; Zhang, W.; Ma, Z.; Zhou, C. First complete mitogenomes of three mayflies in the genus Afronurus (Ephemeroptera: Heptageniidae) and their implications for phylogenetic reconstruction. Biologia 2021, 76, 2291–2302. [Google Scholar] [CrossRef]
- Li, R.; Ma, Z.X.; Zhou, C.F. The first two complete mitochondrial genomes of Neoephemeridae (Ephemeroptera): Comparative analysis and phylogenetic implication for Furcatergalia. Genes 2021, 12, 1875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, R.; Zhou, C.F. Complete mitochondrial genomes of Epeorus carinatus and E. dayongensis (Ephemeroptera: Heptageniidae): Genomic comparison and phylogenetic inference. Gene 2021, 777, 145467–145475. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Y.; Zhang, S.S.; Zhang, L.P.; Yu, D.N.; Cheng, H.Y. The complete mitochondrial genome of Epeorus herklotsi (Ephemeroptera: Heptageniidae) and its phylogeny. Mitochondrial DNA Part B 2018, 3, 303–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalitha, S. Primer Premier 5. Biotech Softw. Internet Rep. 2000, 1, 270–272. [Google Scholar] [CrossRef]
- Zhang, L.P.; Cai, Y.Y.; Yu, D.N.; Storey, K.; Zhang, J.Y. Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae). PeerJ 2018, 6, e4595. [Google Scholar] [CrossRef] [Green Version]
- Burland, T.G. DNASTAR’s Lasergene sequence analysis software. In Bioinformatics Methods and Protocols; Humana Press: Totowa, NJ, USA, 2000; Volume 132, pp. 71–91. [Google Scholar]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Sudhir, K.; Glen, S.; Koichiro, T. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar]
- Zhang, D.; Gao, F.; Jakovli, I.; Zou, H.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Song, H.J.; Sheffield, N.C.; Cameron, S.L.; Miller, K.B.; Whiting, M.F. When phylogenetic assumptions are violated: Base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Syst. Entomol. 2010, 35, 429–448. [Google Scholar] [CrossRef]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhou, C.F.; Gai, Y.H.; Song, D.X.; Zhou, K.Y. The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera. Gene 2008, 424, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Hong, M.; Kim, M.; Kim, M.J.; Park, H.; Kim, K.; Lee, I.; Bae, C.; Jin, B.; Kim, I. The complete mitogenome sequences of the palaeopteran insects Ephemera orientalis (Ephemeroptera: Ephemeridae) and Davidius lunatus (Odonata: Gomphidae). Genome 2009, 52, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qin, J.C.; Zhou, C. The phylogeny of Ephemeroptera in Pterygota revealed by the mitochondrial genome of Siphluriscus chinensis (Hexapoda: Insecta). Gene 2014, 545, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Tan, M.H.; Meng, G.L.; Yang, S.Z.; Su, X.; Liu, S.L.; Song, W.H.; Li, Y.Y.; Wu, Q.; Zhang, A.B.; et al. Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res. 2014, 42, e166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, N.; Li, X.; Yin, X.; Li, X.; Yin, J.; Pan, P. The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships. Sci. Rep. 2019, 9, 17765. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.D.; Jia, Y.Y.; Dai, X.Y.; Ma, J.L.; Yu, D.N. The mitochondrial genome of Caenis sp. (Ephemeroptera: Caenidae) from Fujian and the phylogeny of Caenidae within Ephemeroptera. Mitochondrial DNA Part B 2019, 5, 192–193. [Google Scholar] [CrossRef] [Green Version]
- Macher, J.N.; Drakou, K.; Papatheodoulou, A.; Hoorn, B.; Vasquez, M. The mitochondrial genomes of 11 aquatic macroinvertebrate species from Cyprus. Metabarcoding Metagenom. 2020, 4, 91–96. [Google Scholar] [CrossRef]
- Yu, D.N.; Yu, P.P.; Zhang, L.P.; Storey, K.B.; Zhang, J.Y. Increasing 28 mitogenomes of Ephemeroptera, Odonata and Plecoptera support the Chiastomyaria hypothesis with three different outgroup combinations. PeerJ 2021, 9, e11402. [Google Scholar] [CrossRef]
- Kück, P.; Meid, S.A.; Groß, C.; Wäele, J.W.; Misof, B. AliGROOVE-visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. BMC Bioinf. 2014, 15, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanfear, R.; Calcott, B.; Ho, S.Y.W.; Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012, 29, 1695–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandros, S. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 9, 1312–1313. [Google Scholar]
- Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. Figtree Version 1.4.0. 2012. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 12 December 2021).
- Glazko, G.V.; Nei, M. Estimation of divergence times for major lineages of primate species. Mol. Biol. Evol. 2003, 20, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Heled, J.; Drummond, A.J. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 2012, 61, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.B.; Huang, D.Y. New Middle Jurassic mayfiles (Insecta: Ephemeroptera: Siphlonuridae) from inner Mongolia, China. Ann. Zool. 2008, 58, 521–527. [Google Scholar] [CrossRef]
- He, H.Y.; Wang, X.L.; Zhou, Z.H.; Zhu, R.X.; Jin, F.; Wang, F.; Ding, X.; Boven, A. 40Ar/39Ar dating of ignimbrite from Inner Mongolia, northeastern China, indicates a post-Middle Jurassic age for the overlying Daohugou Bed. Geophys. Res. Lett. 2004, 31, L20609. [Google Scholar] [CrossRef]
- Staniczek, A.H.; Godunko, R.J.; Krzeminski, W. A new fossil mayfly species of the genus Borinquena Traver, 1938 (Insecta: Ephemeroptera: Leptophlebiidae: Atalophlebiinae) from Miocene Dominican amber. Ann. Zool. 2017, 67, 113–119. [Google Scholar] [CrossRef]
- Zhang, W.T.; Shih, C.K.; Shih, Y.H.; Ren, D. A new macrolepidopteran moth (Insecta, Lepidoptera, Geometridae) in Miocene Dominican amber. Zookeys 2020, 965, 73–84. [Google Scholar] [CrossRef]
- Staniczek, A.H.; Godunko, R.J.; Kluge, N.J. Fossil record of the mayfly family Ephemerellidae (Insecta: Ephemeroptera), with description of new species and first report of Ephemerellinae from Baltic amber. J. Syst. Palaeontol. 2018, 16, 1319–1335. [Google Scholar] [CrossRef]
- Godunko, R.J.; Martynov, A.V.; Staniczek, A.H. First fossil record of the mayfly family Vietnamellidae (Insecta, Ephemeroptera) from Burmese amber confirms its Oriental origin and gives new insights into its evolution. Zookeys 2021, 1036, 99–120. [Google Scholar] [CrossRef]
- Misof, B.; Liu, S.L.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flouri, T.; Beutel, R.G.; et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 2014, 346, 763–767. [Google Scholar] [CrossRef]
- Reis, M.D.; Yang, Z.H. MCMCTree Tutorials. 2013. [Google Scholar]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Bachtrog, D.; Thornton, K.; Andolfatto, C.P. Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution 2006, 60, 292–302. [Google Scholar] [CrossRef]
- Yuan, Y.; Kong, L.; Li, Q. Mitogenome evidence for the existence of cryptic species in Coelomactra antiquata. Genes Genom. 2013, 35, 693–701. [Google Scholar] [CrossRef]
- Powell, J.R.; Moriyama, E.N. Evolution of codon usage bias in Drosophila. Proc. Natl. Acad. Sci. USA 1997, 94, 7784–7790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, Y.; Wu, G.; Wang, Z.; Chai, X.; Nie, Q.; Zhang, X. Mutation bias is the driving force of codon usage in the Gallus gallus genome. DNA Res. 2011, 18, 499–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lars, P.; Anke, B.; Georg, M. The complete mitochondrial genome of the onychophoran Epiperipatus biolleyi reveals a unique transfer RNA set and provides further support for the ecdysozoa hypothesis. Mol. Biol. Evol. 2008, 25, 42–51. [Google Scholar]
- Hanada, T.; Suzuki, T.; Yokogawa, T.; Takemoto-Hori, C.; Sprinzl, M.; Watana, B.K. Translation ability of mitochondrial tRNAsSer with unusual secondary structures in an in vitro translation system of bovine mitochondria. Genes Cells 2001, 6, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Kluge, N.J. Phylogeny and higher classification of Ephemeroptera. Zoosyst. Ross. 1998, 72, 255–269. [Google Scholar]
- Rutschmann, S.; Chen, P.; Zhou, C.F.; Monaghan, M.T. Three mitochondrial genomes of early-winged insects (Ephemeroptera: Baetidae and Leptophlebiidae). Mitochondrial DNA Part B 2021, 6, 2969–2971. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.G.; Krieger, M.; Shoemaker, D.W.; Vargo, E.L.; Keller, L. Hierarchical analysis of genetic structure in native fire ant populations: Results from three classes of molecular markers. Genetics 1997, 147, 643–655. [Google Scholar] [CrossRef]
- Williams, H.C.; Ormerod, S.J.; Bruford, M.W. Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera, Baetidae). Mol. Phylogenet. Evol. 2006, 40, 370–382. [Google Scholar] [CrossRef]
Nucleotide Sequence Alignments | ||
---|---|---|
Subset | Subset Partitions | Best Model |
Partition 1 | COII_pos1, COIII_pos1, Cyt b_pos1, ATP6_pos1 | GTR + I + G |
Partition 2 | COI_pos2, Cyt b_pos2, COII_pos2, ATP6_pos2, COIII_pos2 | GTR + I + G |
Partition 3 | ND3_pos1, ND6_pos1, ATP8_pos1, ND2_pos1 | GTR + I + G |
Partition 4 | ND6_pos2, ATP8_pos2, ND2_pos2, ND3_pos2, ND4L_pos2 | GTR + I + G |
Partition 5 | COI_pos1 | GTR + I + G |
Partition 6 | ND4L _pos1, ND1_pos1, ND4_pos1, ND5_pos1 | GTR + I + G |
Partition 7 | ND1_pos2, ND5_pos2, ND4_pos2 | GTR + I + G |
Region | Strand | V. sinensis CN/TL | V. sinensis QY | V. sinensis (HM067837) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length (bp) | AT% | AT Skew | GC Skew | Length (bp) | AT% | AT Skew | GC Skew | Length (bp) | AT% | AT Skew | GC Skew | ||
Whole genome | 15,674 | 70.5 | −0.083 | −0.208 | 15,610 | 69.5 | −0.083 | −0.207 | 15,761 | 70.7 | −0.092 | −0.197 | |
PCGs | + | 6915 | 67.9 | −0.207 | −0.157 | 6915 | 66.4 | −0.208 | −0.160 | 6915 | 67.7 | −0.214 | −0.153 |
− | 4311 | 71.6 | −0.147 | 0.289 | 4311 | 70.9 | −0.138 | 0.289 | 4308 | 71.8 | −0.144 | 0.286 | |
tRNA | + | 910 | 71.3 | −0.005 | 0.034 | 912 | 71.5 | −0.009 | 0.031 | 915 | 71.3 | 0.002 | 0.031 |
− | 519 | 73.6 | 0.031 | 0.314 | 521 | 74.9 | 0.046 | 0.298 | 520 | 74.8 | 0.059 | 0.313 | |
rRNA | − | 2015 | 74.3 | 0.106 | 0.216 | 2011 | 74.2 | 0.111 | 0.215 | 2044 | 74.1 | 0.106 | 0.214 |
Species | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
1 | V. sinensis HM067837 | |||||
2 | V. sp. MT-2014 KM244655 | 0.202 | ||||
3 | V. sp. JZ-2021 MF352146 | 0.187 | 0.210 | |||
4 | V. sinensis CN OK265111 | 0.058 | 0.209 | 0.183 | ||
5 | V. sinensis TL OK265109 | 0.058 | 0.209 | 0.183 | 0.001 | |
6 | V. sinensis QY OK265110 | 0.140 | 0.211 | 0.190 | 0.148 | 0.149 |
Nodes/Clades | Mean Divergence Time (Mya) | 95% HPD Range (Mya) |
---|---|---|
Ephemeridae & Polymitarcyidae | 81.81 | 33.19~142.93 |
(Ephemeridae + Polymitarcyidae) & Potamanthidae | 105.04 | 43.32~164.57 |
Vietnamellidae & Ephemerellidae | 98.50 | 98.00~99.00 |
Teloganodidae & Baetidae | 111.46 | 84.47~142.94 |
(Teloganodidae + Baetidae) & Caenidae | 128.91 | 102.11~162.40 |
(Teloganodidae + (Baetidae + Caenidae)) & Leptophlebiinae | 141.23 | 115.39~174.06 |
((Teloganodidae + (Baetidae + Caenidae)) + Leptophlebiinae) & (Vietnamellidae + Ephemerellidae) | 150.73 | 126.64~183.03 |
(((Teloganodidae + (Baetidae + Caenidae)) + Leptophlebiinae) + (Vietnamellidae + Ephemerellidae)) & ((Ephemeridae + Polymitarcyidae) + Potamanthidae) | 161.50 | 139.21~193.76 |
((((Teloganodidae + (Baetidae + Caenidae)) + Leptophlebiinae) + (Vietnamellidae + Ephemerellidae)) + ((Ephemeridae + Polymitarcyidae) + Potamanthidae)) & Heptageniidae | 173.64 | 155.70~206.74 |
Siphlonuridae & Ameletidae | 159.99 | 159.00~161.00 |
(((((Teloganodidae + (Baetidae + Caenidae)) + Leptophlebiinae) + (Vietnamellidae + Ephemerellidae)) + ((Ephemeridae + Polymitarcyidae) + Potamanthidae)) + Heptageniidae) & (Siphlonuridae + Ameletidae) | 179.27 | 163.65~213.04 |
((((((Teloganodidae + (Baetidae + Caenidae)) + Leptophlebiinae) + (Vietnamellidae + Ephemerellidae)) + ((Ephemeridae + Polymitarcyidae) + Potamanthidae)) + Heptageniidae) + (Siphlonuridae + Ameletidae)) & Isonychiidae | 187.82 | 168.38~223.63 |
(((((((Teloganodidae + (Baetidae + Caenidae)) + Leptophlebiinae) + (Vietnamellidae + Ephemerellidae)) + ((Ephemeridae + Polymitarcyidae) + Potamanthidae)) + Heptageniidae) + (Siphlonuridae + Ameletidae)) + Isonychiidae) & Siphluriscidae | 196.91 | 171.18~236.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Wu, L.; Ayivi, S.P.G.; Storey, K.B.; Ma, Y.; Yu, D.-N.; Zhang, J.-Y. Cryptic Species Exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from Studies of Complete Mitochondrial Genomes. Insects 2022, 13, 412. https://doi.org/10.3390/insects13050412
Tong Y, Wu L, Ayivi SPG, Storey KB, Ma Y, Yu D-N, Zhang J-Y. Cryptic Species Exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from Studies of Complete Mitochondrial Genomes. Insects. 2022; 13(5):412. https://doi.org/10.3390/insects13050412
Chicago/Turabian StyleTong, Yao, Lian Wu, Sam Pedro Galilee Ayivi, Kenneth B. Storey, Yue Ma, Dan-Na Yu, and Jia-Yong Zhang. 2022. "Cryptic Species Exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from Studies of Complete Mitochondrial Genomes" Insects 13, no. 5: 412. https://doi.org/10.3390/insects13050412
APA StyleTong, Y., Wu, L., Ayivi, S. P. G., Storey, K. B., Ma, Y., Yu, D. -N., & Zhang, J. -Y. (2022). Cryptic Species Exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from Studies of Complete Mitochondrial Genomes. Insects, 13(5), 412. https://doi.org/10.3390/insects13050412