Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Extraction of Essential Oils
2.2. Chemical Profile of the Essential Oils
2.3. Insect Rearing
2.4. Fumigant Toxicity
2.5. Biochemical Assays
2.5.1. Energy Reserves
2.5.2. Esterase Activity
2.5.3. Amylolytic and Proteolytic Activity
2.6. Nutritional Indices of Insect Pest
Relative Consumption Rate = F/TA
Relative Growth Rate = G/TA
Efficiency of Conversion of Ingested food = G/F
2.7. Statistical Analysis
3. Results
3.1. Chemical Profile of Essential Oils
3.2. Fumigant Toxicity
3.3. Energy Reserves
3.4. Esterase Activity
3.5. Amylolytic and Proteolytic Activity
3.6. Nutritional Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obretenchev, D.; Zidan, F.; Atanasova, D. Food specialization of the lesser grain borer, Rhyzopertha dominica F. (Coleoptera: Bostrichidae). Can. J. Agric. Crops 2020, 5, 52–58. [Google Scholar] [CrossRef]
- Teixeira, D.L.; Lemes, P.G.; dos Santos Braz, T.G.; Leite, G.L.D.; Zanuncio, J.C. Rhyzopertha dominica (Coleoptera: Bostrichidae) infestation on seeds of Sorghum drummondii (Poaceae) in packages sold in retail stores. Rev. Bras. Entomol. 2021, 65, e20200129. [Google Scholar] [CrossRef]
- Jia, F.; Toews, M.D.; Campbell, J.F.; Ramaswamy, S.B. Survival and reproduction of lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) on flora associated with native habitats in Kansas. J. Stored Prod. Res. 2008, 44, 366–372. [Google Scholar] [CrossRef]
- Ahmad, F.; Ridley, A.; Daglish, G.J.; Burrill, P.R.; Walter, G.H. Response of Tribolium castaneum and Rhyzopertha dominica tovarious resources, near and far from grain storage. J. Appl. Entomol. 2013, 137, 773–781. [Google Scholar] [CrossRef]
- Scheff, D.S.; Campbell, J.F.; Arthur, F.H. Seasonal, landscape, and attractant effects on lesser grain borer, Rhyzopertha dominica (F.), captures in Northeast Kansas. Agronomy 2022, 12, 99. [Google Scholar] [CrossRef]
- Loddé, B.; Lucas, D.; Letort, J.M.; Jegaden, D.; Pougnet, R.; Dewitte, J.D. Acute phosphine poisoning on board a bulk carrier: Analysis of factors leading to a fatal case. J. Occup. Med. Toxicol. 2015, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Park, M.G.; Choi, J.; Hong, Y.S.; Park, C.G.; Kim, B.G.; Lee, S.Y.; Lim, H.J.; Mo, H.H.; Lim, E.; Cha, W. Negative effect of methyl bromide fumigation work on the central nervous system. PLoS ONE 2020, 15, e0236694. [Google Scholar] [CrossRef]
- Collins, P.J.; Falk, M.G.; Nayak, M.K.; Emery, R.N.; Holloway, J.C. Monitoring resistance to phosphine in the lesser grain borer, Rhyzopertha dominica, in Australia: A national analysis of trends, storage types and geography in relation to resistance detections. J. Stored Prod. Res. 2017, 70, 25–36. [Google Scholar] [CrossRef]
- Afful, E.; Elliott, B.; Nayak, M.K.; Phillips, T.W. Phosphine resistance in North American field populations of the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). J. Econ. Entomol. 2018, 111, 463–469. [Google Scholar] [CrossRef]
- Gregory, J.D.; Nayak, M.K. Prevalence of resistance to deltamethrin in Rhyzopertha dominica (F.) in Eastern Australia. J. Stored Prod. Res. 2018, 78, 45–49. [Google Scholar] [CrossRef]
- Sakka, M.K.; Riga, M.; Ioannidis, P.; Baliota, G.V.; Tselika, M.; Jagadeesan, R.; Nayak, M.K.; Vontas, J.; Athanassiou, C.G. Transcriptomic analysis of s-methoprene resistance in the lesser grain borer, Rhyzopertha dominica, and evaluation of piperonyl butoxide as a resistance breaker. BMC Genom. 2021, 22, 65. [Google Scholar] [CrossRef] [PubMed]
- Regnault-Roger, C.; Vincent, C.; Arnasson, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–425. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A.; Ziaee, M.; Palla, F. Essential oils extracted from deferent species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecule 2020, 25, 1556. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Kiran, S.; Prakash, B. Assessment of toxicity, antifeedant activity, and biochemical responses in stored-grain insects exposed to lethal and sublethal doses of Gaultheria procumbens L. essential oil. J. Agric. Food Chem. 2015, 48, 10518–10524. [Google Scholar] [CrossRef]
- Ncibi, S.; Attia, S.; Diop, S.M.B.; Ammar, M.; Hance, T. Bio-Insecticidal activity of three essential oils against Rhyzopertha dominica (Fabricius, 1792) (Coleoptera: Bostrichidae). Afr. Entomol. 2020, 28, 339–348. [Google Scholar] [CrossRef]
- Djebbi, T.; Soltani, A.; Chargui, H.; Yangui, I.; Messaoud, C.; Jemâa, J.M.B. Composition and fumigant protectant potential of Tunisian Citrus aurantium L. essential oils against Rhyzopertha dominica F. (Coleoptera: Bostrichidae). In Proceedings of the 1st International Electronic Conference on Entomology, Online, 1–15 July 2021. [Google Scholar] [CrossRef]
- Coppen, J.W. Eucalyptus the Genus Eucalyptus, 1st ed.; CRC Press: London, UK, 2002. [Google Scholar]
- Barbosa, L.C.; Filomeno, C.A.; Teixeira, R.R. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef] [Green Version]
- Elaissi, A.; Rouis, Z.; Salem, N.A.; Mabrouk, S.; ben Salem, Y.; Salah, K.B.; Aouni, M.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F.; et al. Chemical composition of 8 eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement. Altern. Med. 2012, 12, 81. [Google Scholar] [CrossRef] [Green Version]
- Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res. 2015, 48, 7. [Google Scholar] [CrossRef] [Green Version]
- Ebadollahi, A.; Setzer, W.N. Analysis of the essential oils of Eucalyptus camaldulensis Dehnh. and E. viminalis Labill. as a contribution to fortify their insecticidal application. Nat. Prod. Commun. 2020, 15, 1934578X20946248. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J. A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. Toxin Rev. 2015, 34, 76–91. [Google Scholar] [CrossRef]
- Hamdi, S.H.; Hedjal-Chebheb, M.; Kellouche, A.; Khouja, M.L.; Boudabous, A.; Ben Jemâa, J.M. Management of three pests’ population strains from Tunisia and Algeria using Eucalyptus essential oils. Ind. Crops Prod. 2015, 74, 551–556. [Google Scholar] [CrossRef]
- Parsia Aref, S.; Valizadegan, O.; Farashiani, M.E. The insecticidal effect of essential oil of Eucalyptus floribundi against two major stored product insect pests; Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.). J. Essent. Oil Bear. Plants 2016, 19, 820–831. [Google Scholar] [CrossRef]
- Filomeno, C.A.; Almeida Barbosa, L.C.; Teixeira, R.R.; Pinheiro, A.L.; de Sá Farias, E.; Ferreira, J.S.; Picanço, M.C. Chemical diversity of essential oils of Myrtaceae species and their insecticidal activity against Rhyzopertha dominica. Crop Prot. 2020, 137, 105309. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, Alabama, 2015. [Google Scholar]
- NIST. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. Available online: https://webbook.nist.gov/chemistry/ (accessed on 15 March 2022).
- Khashaveh, A.; Ziaee, M.; Safaralizadeh, M.H.; Attighi Lorestani, F. Control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) with spinosad dust formulation in different oilseeds. Turk. J. Agric. For. 2009, 33, 203–209. [Google Scholar] [CrossRef]
- Van Handel, E. Rapid determination of total lipids in mosquitoes. J. Am. Mosq. Control Assoc. 1985, 1, 302–304. Available online: https://www.biodiversitylibrary.org/content/part/JAMCA/JAMCA_V01_N3_P302-304.pdf (accessed on 20 April 2022).
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Yuval, B.; Kaspi, R.; Shloush, S.; Warburg, M.S. Nutritional reserves regulate male participation in Mediterranean fruit fly leks. Ecol. Entomol. 1998, 23, 211–215. [Google Scholar] [CrossRef]
- Van Asperen, K. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 1962, 8, 401–416. [Google Scholar] [CrossRef]
- Elpidina, E.N.; Vinokurov, K.S.; Gromenko, V.A.; Rudenshaya, Y.A.; Dunaevsky, Y.E.; Zhuzhikov, D.P. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Arch. Insect Biochem. Physiol. 2001, 48, 206–216. [Google Scholar] [CrossRef]
- Bernfeld, P. Amylase, α and β. Methods Enzymol. 1955, 1, 149–158. [Google Scholar] [CrossRef]
- Waldbauer, G.P. The consumption and utilization of food by insects. Adv. Insect Physiol. 1968, 5, 229–288. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Bignell, C.M.; Dunlop, P.J.; Brophy, J.J. Volatile leaf oils of some south-western and southern Australian species of the genus Eucalyptus (series 1). Part XIX. Flavour. Fragr. J. 1998, 13, 131–139. [Google Scholar] [CrossRef]
- Bignell, C.M.; Dunlop, P.J.; Brophy, J.J.; Jackson, J.F. Volatile leaf oils of some South-western and Southern Australian species of the genus Eucalyptus. Part VII. Subgenus Symphyomyrtus, Section Exsertaria. Flavour. Fragr. J. 1996, 11, 35–41. [Google Scholar] [CrossRef]
- Sefidkon, F.; Assareh, M.H.; Abravesh, Z.; Barazandeh, M.M. Chemical composition of the essential oils of four cultivated Eucalyptus species in Iran as medicinal plants (E. microtheca, E. spathulata, E. largiflorens and E. torquata). Iran. J. Pharm. Sci. 2010, 20, 135–140. [Google Scholar] [CrossRef]
- Maghsoodlou, M.T.; Kazemipoor, N.; Valizadeh, J.; Seifi, M.F.; Rahneshan, N. Essential oil composition of Eucalyptus microtheca and Eucalyptus viminalis. Avicenna J. Phytomed. 2015, 5, 540. [Google Scholar]
- Nikbakht, M.R.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Gandomi, H.; Abbaszadeh, S.; Batooli, H. The chemical composition and in vitro antifungal activities of essential oils of five Eucalyptus species. J. Essent. Oil Bear. Plants 2015, 18, 666–677. [Google Scholar] [CrossRef]
- Rahimi-Nasrabadi, M.; Ahmadi, F.; Batooli, H. Essential oil composition of Eucalyptus procera Dehnh. leaves from central Iran. Nat. Prod. Res. 2012, 26, 637–642. [Google Scholar] [CrossRef]
- Nouri-Ganbalani, G.; Ebadollahi, A.; Nouri, A. Chemical composition of the essential oil of Eucalyptus procera Dehnh. and its insecticidal effects against two stored product insects. J. Essent. Oil Bear. Plants 2016, 19, 1234–1242. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J.; Maroufpoor, M.; Rahimi-Nasrabadi, M. Acaricidal potentials of the terpene-rich essential oils of two Iranian Eucalyptus species against Tetranychus urticae Koch. J. Oleo Sci. 2017, 66, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, M.; Mehdizadeh, L. Chemistry of essential oils and factors influencing their constituents. In Handbook of Food Bioengineering, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: New York, NY, USA, 2017; pp. 379–419. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Wilson, J.A.; Bradbury, R. Insecticidal activities of commercial rosemary oils (Rosmarinus officinalis.) against larvae of Pseudaletia unipuncta. and Trichoplusia ni. in relation to their chemical compositions. Pharm. Biol. 2008, 46, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Scalerandi, E.; Flores, G.A.; Palacio, M.; Defagó, M.T.; Carpinella, M.C.; Valladares, G.; Bertoni, A.; Palacios, S.M. Understanding synergistic toxicity of terpenes as insecticides: Contribution of metabolic detoxification in Musca domestica. Front. Plant Sci. 2018, 9, 1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarma, R.; Adhikari, K.; Mahanta, S.; Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 2019, 9, 9471. [Google Scholar] [CrossRef] [Green Version]
- Rozman, V.; Kalinovic, I.; Korunic, Z. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J. Stored Prod. Res. 2007, 43, 349–355. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Prajapati, V.; Khanuja, S.P.; Kumar, S. Effect of d-limonene on three stored-product beetles. J. Econ. Entomol. 1962, 96, 990–995. [Google Scholar] [CrossRef]
- Liu, J.; Hua, J.; Qu, B.; Guo, X.; Wang, Y.; Shao, M.; Luo, S. Insecticidal terpenes from the essential oils of Artemisia nakaii and their inhibitory effects on acetylcholinesterase. Front. Plant Sci. 2021, 12, 720816. [Google Scholar] [CrossRef]
- Nestel, D.; Tolmasky, D.; Rabossi, A.; Quesada-Allué, L.A. Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2003, 96, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Ann. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Chowanski, S.; Lubawy, J.; Spochacz, M.; Ewelina, P.; Grzegorz, S.; Rosinski, G.; Slocinska, M. Cold induced changes in lipid, protein and carbohydrate levels in the tropical insect Gromphadorhina coquereliana. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 183, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Magierowicz, K.; Górska-Drabik, E.; Sempruch, C. The effect of Tanacetum vulgare essential oil and its main components on some ecological and physiological parameters of Acrobasis advenella (Zinck.) (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 2020, 162, 105–112. [Google Scholar] [CrossRef]
- Shahriari, M.; Zibaee, A.; Shamakhi, L.; Sahebzadeh, N.; Naseri, D.; Hoda, H. Bio-efficacy and physiological effects of Eucalyptus globulus and Allium sativum essential oils against Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Toxin Rev. 2020, 39, 422–433. [Google Scholar] [CrossRef]
- Oftadeh, M.; Jalali Sendi, J.; Ebadollahi, A.; Setzer, W.N.; Krutmuang, P. Mulberry protection through flowering-stage essential oil of Artemisia annua against the lesser mulberry pyralid, Glyphodes pyloalis Walker. Foods 2021, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.L.; Rigden, D.J.; Melo, F.R. Plant α-amylase inhibitors and their interaction with insect α-amylase: Structure, function and potential for crop production. Eur. J. Biochem. 2002, 269, 397–412. [Google Scholar] [CrossRef]
- Parsia Aref, S.; Valizadegan, O. Eucalyptus kruseana Muel essential oil: Chemical composition and insecticidal effects against the lesser grain borer, Rhyzopertha dominica F. (Coleoptera: Bostrichidae). Biharean Biol. 2015, 9, 93–97. [Google Scholar]
- Parsia Aref, S.; Valizadegan, O.; Farashiani, M.E. Eucalyptus dundasii Maiden essential oil, chemical composition and insecticidal values against Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.). J. Plant Prot. Res. 2015, 55, 35–41. [Google Scholar] [CrossRef]
- Hummelbrunner, L.A.; Isman, M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the Tobacco Cutworm, Spodoptera litura (Lep., Noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef]
- Zunjarrao, S.S.; Tellis, M.B.; Joshi, S.N.; Joshi, R.S. Plant-Insect Interaction: The saga of molecular coevolution. In Co-Evolution of Secondary Metabolites, 1st ed.; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–27. [Google Scholar]
- Agrawal, A.A.; Zhang, X. The evolution of coevolution in the study of species interactions. Evolution 2021, 75, 1594–1606. [Google Scholar] [CrossRef]
- Khan, S.; Uddin, M.N.; Rizwan, M.; Khan, W.; Farooq, M.; Sattar Shah, A.; Muhammad, M. Mechanism of insecticide resistance in insects/pests. Pol. J. Environ. Stud. 2020, 29, 2023–2030. [Google Scholar] [CrossRef]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef] [PubMed]
RIcalc | RIdb | Compound a | E. microtheca | E. procera | E. spathulata | E. torquata |
---|---|---|---|---|---|---|
933 | 932 | α-Pinene | 5.6 | 14.0 | 3.9 | 20.0 |
954 | 954 | Camphene | - | 0.6 | 0.4 | 0.6 |
980 | 979 | β-Pinene | 5.1 | 0.5 | 1.3 | 0.8 |
1007 | 990 | Myrcene | - | - | 0.6 | - |
1025 | 1024 | p-Cymene | 0.9 | 1.3 | 3.8 | 2.6 |
1025 | 1029 | Limonene | 1.6 | - | - | - |
1032 | 1031 | 1,8-Cineole | 12.1 | 21.3 | 27.1 | 24.2 |
1058 | 1059 | γ-Terpinene | 0.2 | 0.4 | - | 0.6 |
1062 | 1062 | Artemisia ketone | - | - | 0.5 | - |
1093 | 1086 | Fenchone | 0.3 | - | - | - |
1098 | 1096 | Linalool | - | - | 0.8 | - |
1098 | 1099 | α-Pinene oxide | - | - | - | 0.2 |
1101 | 1103 | Isoamyl isovalerate | 0.5 | 0.2 | 0.8 | 0.5 |
1104 | 1104 | 2-Methylbutyl isovalerate | - | - | - | 0.2 |
1107 | 1114 | endo-Fenchol | 0.4 | 0.1 | 0.9 | 0.9 |
1115 | 1121 | exo-Fenchol | 1.4 | 1.1 | - | - |
1124 | 1128 | allo-Ocimene | - | 0.3 | - | 0.6 |
1130 | 1135 | trans-Pinocarveol | 1.2 | 5.0 | 2.3 | 0.2 |
1137 | 1140 | Nopinone | 0.4 | - | - | - |
1143 | 1144 | trans-Verbenol | - | - | - | 0.1 |
1143 | 1142 | trans-Sabinol | 3.8 | 14.6 | 7.6 | 2.0 |
1150 | 1149 | Camphene hydrate | 0.7 | - | - | 0.1 |
1153 | 1152 | iso-Menthone | - | - | 0.5 | 0.1 |
1157 | 1160 | iso-Borneol | 0.5 | 0.4 | - | 0.2 |
1166 | 1164 | Pinocarvone | 1.4 | 4.4 | 2.7 | - |
1169 | 1169 | Borneol | 1.5 | 0.9 | 1.4 | 1.8 |
1169 | 1177 | Terpinen-4-ol | 2.2 | - | 0.8 | 1.5 |
1178 | 1174 | iso-Pinocamphone | - | 0.4 | - | - |
1187 | 1185 | Cryptone | - | - | - | 0.3 |
1189 | - | Unidentified b | 1.0 | - | 0.8 | - |
1190 | 1189 | trans-p-Mentha-1(7),8-dien-2-ol | - | 1.5 | 1.8 | - |
1192 | 1188 | α-Terpineol | 3.7 | 0.4 | 0.7 | 2.5 |
1199 | 1195 | Myrtenal | 1.2 | - | - | - |
1200 | 1195 | Myrtenol | 1.1 | 1.0 | 0.8 | 0.2 |
1202 | 1195 N | cis-iso-Piperitenol | - | 0.1 | - | - |
1212 | 1205 | Verbenone | 0.2 | 0.1 | - | 0.1 |
1220 | 1216 | trans-Carveol | 0.6 | 0.5 | 0.5 | 0.2 |
1230 | 1230 | cis-p-Mentha-1(7),8-dien-2-ol | 0.9 | 0.9 | 1.8 | 0.3 |
1232 | 1238 | (E)-Ocimenone | - | 0.2 | - | 0.1 |
1242 | 1241 | Cuminaldehyde | 1.3 | - | 2.5 | 0.4 |
1245 | 1243 | Carvone | 0.4 | 0.2 | 0.7 | 0.1 |
1249 | 1247 | Carvotanacetone | - | t | - | 0.1 |
1255 | 1252 | Piperitone | 0.3 | 0.1 | 0.9 | 0.3 |
1278 | 1275 | Phellandral | - | - | - | 0.1 |
1286 | 1284 | (E)-Anethole | 0.8 | 0.2 | 1.6 | 0.3 |
1288 | 1290 | Thymol | 0.4 | 0.1 | 1.1 | 0.1 |
1297 | 1298 | trans-Pinocarvyl acetate | - | 0.2 | - | - |
1300 | 1299 | Carvacrol | 0.5 | t | 0.6 | 0.1 |
1339 | 1337 | 2-Hydroxycineole acetate | 0.6 | t | 0.4 | - |
1346 | 1346 | α-Terpinyl acetate | - | t | 0.2 | - |
1372 | 1374 | iso-Ledene | 0.3 | t | - | 0.3 |
1373 | 1374 | α-Copaene | 0.3 | t | - | 0.1 |
1390 | 1390 | trans-β-Elemene | - | t | - | - |
1410 | 1413 N | β-Maaliene | - | 0.1 | - | - |
1412 | 1409 | α-Gurjunene | - | - | - | 1.3 |
1420 | 1419 | (E)-β-Caryophyllene | - | t | - | - |
1429 | 1427 N | γ-Maaliene | - | 0.2 | - | 0.2 |
1434 | 1433 | β-Gurjunene (=Calarene) | - | 0.5 | - | 0.7 |
1442 | 1441 | Aromadendrene | 11.7 | 6.1 | 3.6 | 7.8 |
1459 | 1455 N | Valerena-4,7(11)-diene | - | - | - | 0.2 |
1463 | 1460 | allo-Aromadendrene | 2.6 | 1.3 | 1.0 | 1.8 |
1474 | 1477 | γ-Gurjunene | 0.4 | 0.1 | - | 0.2 |
1477 | 1479 | γ-Muurolene | 0.5 | 0.1 | - | 0.2 |
1487 | 1490 N | Phenethyl isovalerate | - | - | 0.5 | - |
1489 | 1490 | β-Selinene | 1.0 | 0.4 | 0.2 | 0.6 |
1496 | 1496 | Viridiflorene | - | 0.3 | - | 1.4 |
1499 | 1498 | α-Selinene | 0.5 | - | - | - |
1501 | 1500 | α-Muurolene | 0.3 | - | - | 0.1 |
1513 | 1513 | γ-Cadinene | 1.2 | 0.1 | - | 0.3 |
1520 | 1522 | trans-Calamenene | 0.6 | 0.1 | - | - |
1523 | 1523 | δ-Cadinene | - | - | - | 0.3 |
1562 | - | Unidentified c | 3.0 | 2.1 | 2.8 | 2.7 |
1569 | 1567 | Maaliol | 2.8 | 1.8 | 2.5 | 1.4 |
1573 | 1584 N | Boronia butenal | - | - | 0.9 | - |
1574 | 1580 N | epi-Globulol | - | - | - | 0.3 |
1576 | - | Unidentified d | 1.0 | 0.7 | - | - |
1582 | 1578 | Spathulenol | 4.6 | - | - | 0.7 |
1592 | 1590 | Globulol | 5.0 | 7.2 | 11.3 | 8.4 |
1598 | 1595 | Cubeban-11-ol | 2.3 | 2.0 | 2.9 | 2.4 |
1605 | 1600 | Rosifoliol | 1.0 | 0.3 | 0.3 | 1.0 |
1607 | 1602 | Ledol | 0.4 | 0.4 | 0.5 | 0.3 |
1618 | - | Unidentified e | 1.3 | 0.7 | 1.0 | 0.5 |
1625 | 1629 S | Rosifoliol isomer | 1.2 | 0.5 | 0.6 | 1.6 |
1628 | 1628 | 1-epi-Cubenol | - | - | 0.3 | 0.2 |
1629 | 1631 | Muurola-4,10(14)-dien-1β-ol | 1.1 | 0.3 | - | - |
1640 | 1640 | τ-Cadinol | - | - | - | 0.5 |
1642 | 1642 | τ-Muurolol | 1.1 | 0.1 | - | - |
1650 | 1650 | β-Eudesmol | - | t | - | 0.2 |
1655 | 1654 | α-Cadinol | 1.1 | - | - | 0.7 |
1656 | 1658 | neo-Intermedeol | - | 0.3 | 0.4 | - |
1659 | 1666 | 14-Hydroxy-9-epi-(Z)-caryophyllene | - | 0.1 | - | - |
1674 | 1675 | Cadalene | 0.3 | 0.1 | - | - |
1900 | 1900 | Nonadecane | 0.4 | - | - | - |
Monoterpene hydrocarbons | 13.4 | 17.1 | 10.0 | 25.2 | ||
Oxygenated monoterpenoids | 36.6 | 53.6 | 56.6 | 36.0 | ||
Sesquiterpene hydrocarbons | 19.6 | 9.4 | 4.8 | 15.6 | ||
Oxygenated sesquiterpenoids | 20.5 | 13.0 | 18.9 | 17.6 | ||
Others | 2.2 | 0.4 | 3.8 | 1.2 | ||
Total identified | 92.3 | 93.5 | 94.0 | 95.6 |
Essential Oil | Kolmogorov–Smirnov Test | Analysis of Variance | ||||||
---|---|---|---|---|---|---|---|---|
Concentration | Time | Concentration × Time | ||||||
Z | Significant (Two-Tailed) | F (df = 5, 36) | p-Value | F (df = 2, 36) | p-Value | F (df = 10, 36) | p-Value | |
E. microtheca | 0.879 | 0.423 | 134.425 | <0.0001 * | 33.507 | <0.0001 * | 1.496 | 1.4558 NS |
E. procera | 0.778 | 0.580 | 214.959 | <0.0001 * | 57.999 | <0.0001 * | 2.584 | 0.0179 * |
E. spatulata | 0.778 | 0.579 | 139.085 | <0.0001 * | 12.275 | <0.0001 * | 0.723 | 0.6976 NS |
E. torquata | 0.834 | 0.489 | 54.029 | <0.0001 * | 3.543 | 0.0394 * | 0.371 | 0.9511 NS |
Essential Oil | Time (h) | LC50 with 95% Confidence Limits (µL/L of Air) | LC90 with 95% Confidence Limits (µL/L of Air) | Relative Potency a | χ2 (df = 4) | Slope ± SE | Sig. b | r2 |
---|---|---|---|---|---|---|---|---|
E. microtheca | 24 | 25.261 (21.295–29.077) | 138.276 (101.151–227.377) | 1.717 | 0.234 | 1.736 ± 0.216 | 0.994 | 0.997 |
48 | 19.947 (17.721–22.002) | 53.783 (47.142–64.084) | 2.174 | 7.203 | 2.975 ± 0.268 | 0.126 | 0.987 | |
72 | 18.995 (16.969–20.853) | 46.714 (41.554–54.431) | 2.283 | 4.381 | 3.279 ± 0.289 | 0.357 | 0.989 | |
E. procera | 24 | 22.208 (18.749–25.721) | 133.564 (95.976–223.511) | 1.953 | 0.809 | 1.645 ± 0.196 | 0.937 | 0.989 |
48 | 16.733 (14.778–18.582) | 49.745 (42.984–60.362) | 2.592 | 7.123 | 2.708 ± 0.238 | 0.130 | 0.998 | |
72 | 15.455 (13.861–16.953) | 37.778 (33.575–43.973) | 2.806 | 5.397 | 3.302 ± 0.279 | 0.249 | 0.971 | |
E. spatulata | 24 | 43.372 (37.683–49.779) | 229.298 (158.106–432.583) | 1.000 | 3.148 | 1.772 ± 0.246 | 0.533 | 0.947 |
48 | 34.785 (30.576–38.779) | 127.102 (101.882–177.469) | 1.247 | 3.214 | 2.277 ± 0.257 | 0.523 | 0.965 | |
72 | 33.321 (29.673–36.747) | 102.915 (86.441–132.090) | 1.302 | 4.773 | 2.617 ± 0.266 | 0.311 | 0.959 | |
E. torquata | 24 | 37.728 (32.758–43.340) | 201.490 (139.363–375.024) | 1.150 | 0.797 | 1.761 ± 0.239 | 0.939 | 0.986 |
48 | 32.284 (28.643–35.902) | 116.741 (93.432–162.569) | 1.343 | 1.042 | 2.296 ± 0.249 | 0.903 | 0.988 | |
72 | 31.567 (28.175–34.905) | 105.017 (86.103–140.042) | 1.374 | 2.582 | 2.455 ± 0.253 | 0.630 | 0.973 |
Treatment | Protein Content | Glycogen Content | Lipid Content |
---|---|---|---|
Control | 126.17 ± 2.19 a | 57.22 ± 5.37 a | 6.93 ± 0.97 a |
E. microtheca | 109.17 ± 1.92 b | 39.72 ± 1.47 b | 4.60 ± 0.23 b |
E. procera | 101.33 ± 2.03 c | 35.78 ± 0.96 b | 4.80 ± 0.31 b |
E. spatulata | 107.16 ± 2.52 bc | 37.44 ± 1.01 b | 5.47 ± 0.40 ab |
E. torquata | 106.00 ± 2.75 bc | 39.28 ± 1.48 b | 6.20 ± 0.12 ab |
ANOVA | F = 17.02; df = 4, 10; p = 0.0002 | F = 10.82; df = 4, 10; p = 0.0012 | F = 3.76; df = 4, 10; p = 0.0407 |
Treatment | α-Esterase Activity | β-Esterase Activity |
---|---|---|
Control | 0.041 ± 0.001 c | 0.119 ± 0.005 c |
E. microtheca | 0.097 ± 0.001 a | 0.133 ± 0.005 bc |
E. procera | 0.095 ± 0.002 a | 0.142 ± 0.009 ab |
E. spatulata | 0.092 ± 0.003 a | 0.156 ± 0.005 a |
E. torquata | 0.085 ± 0.001 b | 0.155 ± 0.008 a |
ANOVA | F = 145.06; df = 4, 10; p < 0.0001 | F = 5.53; df = 4, 10; p = 0.0130 |
Treatment | Amylolytic Activity (mU/mg) | Proteolytic Activity (U/mg) |
---|---|---|
Control | 0.400 ± 0.026 a | 0.121 ± 0.014 a |
E. microtheca | 0.180 ± 0.038 b | 0.037 ± 0.007 b |
E. procera | 0.193 ± 0.041 b | 0.038 ± 0.010 b |
E. spatulata | 0.177 ± 0.047 b | 0.042 ± 0.005 b |
E. torquata | 0.243 ± 0.042 b | 0.051 ± 0.018 b |
ANOVA | F = 5.70; df = 4, 10; p = 0.0118 | F = 9.19; df = 4, 10; p = 0.0022 |
Treatment | CI | ECI (%) | RCR (mg/mg/Day) | RGR (mg/mg/Day) |
---|---|---|---|---|
Control | 7.69 ± 0.82 a | 3.06 ± 0.18 a | 0.57 ± 0.06 a | 0.017 ± 0.001 a |
E. microtheca | 3.40 ± 0.58 b | 2.93 ± 0.77 a | 0.24 ± 0.04 b | 0.006 ± 0.002 b |
E. procera | 4.42 ± 0.92 b | 2.97 ± 0.52 a | 0.32 ± 0.06 b | 0.009 ± 0.002 b |
E. spatulata | 4.26 ± 0.81 b | 1.82 ± 0.69 a | 0.30 ± 0.05 b | 0.004 ± 0.001 b |
E. torquata | 5.58 ± 1.29 ab | 2.90 ± 0.78 a | 0.40 ± 0.09 ab | 0.008 ± 0.002 b |
ANOVA | F = 3.75; df = 4, 30; p = 0.0137 | F = 0.67; df = 4, 30; p = 0.6210 | F = 3.75; df = 4, 30; p = 0.0137 | F = 9.36; df = 4, 30; p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebadollahi, A.; Naseri, B.; Abedi, Z.; Setzer, W.N.; Changbunjong, T. Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.). Insects 2022, 13, 517. https://doi.org/10.3390/insects13060517
Ebadollahi A, Naseri B, Abedi Z, Setzer WN, Changbunjong T. Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.). Insects. 2022; 13(6):517. https://doi.org/10.3390/insects13060517
Chicago/Turabian StyleEbadollahi, Asgar, Bahram Naseri, Zahra Abedi, William N. Setzer, and Tanasak Changbunjong. 2022. "Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.)" Insects 13, no. 6: 517. https://doi.org/10.3390/insects13060517
APA StyleEbadollahi, A., Naseri, B., Abedi, Z., Setzer, W. N., & Changbunjong, T. (2022). Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.). Insects, 13(6), 517. https://doi.org/10.3390/insects13060517