Impact of Post-Harvest Management Practices in Corn (Zea mays L.) Fields on Arthropods in Subsequent Soybean (Glycine max [L.] Merr.) Plantings
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Treatment and Plot Layout
2.2. Management Tasks
2.3. Foliar Sampling of Pests and Beneficial Arthropods
2.4. Pitfall Trap Sampling
2.5. Natural Enemy Efficacy
2.6. Statistical Analysis
3. Results
3.1. Foliar Sampling of Pests and Beneficial Arthropods
3.2. Pitfall Trap Sampling
3.3. Natural Enemy Efficacy
3.4. Crop Yield
4. Discussion
4.1. Summary of Arthropod and Crop Yield Responses
4.2. Epigeal Predators
4.3. Parasitoid Abundance and Efficacy
4.4. Crop Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA, 2018. World Agricultural Supply and Demand Estimates. WASDEE-577, 10 May 2018. Available online: https://farmdocdaily.illinois.edu/2018/08/tariff-conflict-change-value-field-crops.html (accessed on 15 May 2018).
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.J.; Schepers, J.S.; Shapiro, C.A.; Arneson, N.J.; Eskridge, K.M.; Oliveira, M.C.; Giesle, L.J. Characterizing soybean vigor and productivity using multiple crop canopy sensor readings. Field Crops Res. 2018, 216, 22–31. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Yendrek, C.R.; Skoneczka, J.A.; Long, S.P. Accelerating yield potential in soybean: Potential targets for biotechnological improvement. Plant Cell Environ. 2012, 35, 38–52. [Google Scholar] [CrossRef]
- Oerke, E. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 1973, 43, 95–124. [Google Scholar] [CrossRef]
- Hooks, C.R.R.; Hinds, J.; Zobel, E.; Patton, T. Impact of crimson clover dying mulch on two eggplant insect herbivores. J. Appl. Entomol. 2012, 137, 170–180. [Google Scholar] [CrossRef]
- Bryant, A.; Brainard, D.C.; Haramoto, E.R.; Szendrei, Z. Cover crop mulch and weed management influence arthropod communities in strip-tilled cabbage. Environ. Entomol. 2013, 42, 293–306. [Google Scholar] [CrossRef]
- Bowers, C.; Toews, M.D.; Schmidt, J.M. Winter cover crops shape early-season predator communities and trophic interactions. Ecosphere 2021, 12, e03635. [Google Scholar] [CrossRef]
- Mutchler, C.K.; McDowell, L.L. Soil loss from cotton with winter cover crops. Trans. ASAE 1990, 33, 432–436. [Google Scholar] [CrossRef]
- Ding, G.; Liu, X.; Herbert, S.; Novak, J.; Amarasiriwardena, D.; Xing, B. Effect of cover crop management on soil organic matter. Geoderma 2006, 130, 229–239. [Google Scholar] [CrossRef]
- Olson, K.R.; Ebelhar, S.A.; Lang, J.M. Cover crop effects on crop yields and soil organic carbon content. Soil Sci. 2010, 175, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.A. Sequential NLEAP simulations to examine effect of early and late planted winter cover crops on nitrogen dynamics. J. Soil Water Conserv. 1998, 53, 241–244. [Google Scholar]
- Haramoto, E.; Brainard, D. Spatial and temporal variability in Powell amaranth (Amaranthus powellii) emergence under strip tillage with cover crop residue. Weed Sci. 2017, 65, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Kolb, L.; Leslie, A.; Hooks, C.R.R. Using reduced tillage and cover crop residue to manage weeds in organic vegetable production. Weed Technol. 2017, 31, 557–573. [Google Scholar] [CrossRef]
- Wallace, J.M.; Williams, A.; Liebert, J.A.; Ackroyd, V.J.; Vann, R.A.; Curran, W.S.; Keene, C.L.; VanGessel, M.J.; Ryan, M.R.; Mirsky, S.B. Cover crop-based, organic rotational no-till corn and soybean production systems in the Mid-Atlantic United States. Agriculture 2017, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Hooks, C.R.R.; Wang, K.-H.; Meyer, S.L.F.; Lekveishvili, M.; Hinds, J.; Zobel, E.; Rosario-Lebron, A.; Lee-Bullock, M. Impact of no-till cover cropping Italian ryegrass on above and below ground faunal communities inhabiting a soybean field with special emphasis on soybean cyst nematodes. J. Nematol. 2011, 43, 166–175. [Google Scholar]
- Dunbar, M.W.; Gassmann, A.J.; O’Neal, M.E. Limited impact of a fall-seeded, spring-terminated rye cover crop on beneficial arthropods. Environ. Entomol. 2012, 46, 284–290. [Google Scholar] [CrossRef]
- Cornelius, C.; Bradley, K. Influence of various cover crop species on winter and summer annual weed emergence in soybean. Weed Technol. 2017, 31, 503–513. [Google Scholar] [CrossRef]
- Leslie, A.W.; Wang, K.H.; Meyer, S.L.; Marahatta, S.; Hooks, C.R. Influence of cover crops on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop. Appl. Soil Ecol. 2017, 117, 21–31. [Google Scholar] [CrossRef]
- Moore, M.; Gillespie, T.; Swanton, C. Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine max) development. Weed Technol. 1994, 8, 512–518. [Google Scholar] [CrossRef]
- Timper, P.; Davis, R.F.; Tillman, P.G. Reproduction of Meloidogyne incognita on winter cover crops used in cotton production. J. Nematol. 2006, 38, 83–89. [Google Scholar] [PubMed]
- Mischler, R.A.; Curran, W.S.; Duiker, S.W.; Hyde, J.A. Use of a rolled-rye cover crop for weed suppression in no-till soybeans. Weed Technol. 2010, 24, 253–261. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Fergen, J.K. Enhancing predation of a subterranean insect pest: A conservation benefit of winter vegetation in agroecosystems. Appl. Soil Ecol. 2011, 51, 9–16. [Google Scholar] [CrossRef]
- Timper, P. Conserving and enhancing biological control of nematodes. J. Nematol. 2014, 46, 75–89. [Google Scholar]
- Fox, A.F.; Kim, T.N.; Bahlai, C.A.; Woltz, J.M.; Gratton, C.; Landis, D.A. Cover crops have neutral effects on predator communities and biological control services in annual cellulosic bioenergy cropping systems. Agric. Ecosyst. Environ. 2016, 232, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Mollot, G.; Duyck, P.F.; Lefeuvre, P.; Lescourret, F.; Martin, J.F.; Piry, S.; Canard, E.; Tixier, P. Cover cropping alters the diet of arthropods in a banana plantation: A metabarcoding approach. PLoS ONE 2014, 9, e93740. [Google Scholar] [CrossRef] [Green Version]
- Al-Kaisi, M.; Licht, M.A. Effect of strip tillage on corn nitrogen uptake and residual soil nitrate accumulation compared with no-tillage and chisel plow. Agron. J. 2004, 96, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- House, G.J.; Stinner, B.R. Arthropods in no-tillage soybean agroecosystems: Community composition and ecosystem interactions. Environ. Manag. 1983, 7, 23–28. [Google Scholar] [CrossRef]
- Triplett, G.B., Jr.; Dick, W.A. No-tillage crop production: A revolution in agriculture! Agron. J. 2008, 100, S-153–S-165. [Google Scholar] [CrossRef]
- Furlan, L.; Milosavljević, I.; Chiarini, F.; Benvegnù, I. Effects of conventional versus no-tillage systems on the population dynamics of elaterid pests and the associated damage at establishment of maize crops. Crop Prot. 2021, 149, 105751. [Google Scholar] [CrossRef]
- USDA ERS, 2022. Available online: https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/ (accessed on 10 August 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Plagens, M.J.; Whitcomb, W.H. Corn residue as an overwintering site for spiders and predaceous insects in Florida. Fla. Entomol. 1986, 69, 665–67155. [Google Scholar] [CrossRef]
- Greenslade, P.J.M. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J. Anim. Ecol. 1964, 33, 301–310. [Google Scholar] [CrossRef]
- Blubaugh, C.K.; Kaplan, I. Tillage compromises weed seed predator activity across developmental stages. Biol. Control 2015, 81, 76–82. [Google Scholar] [CrossRef]
- Rosario-Lebron, A.; Leslie, A.W.; Chen, G.; Hooks, C.R.R. The effect of barley cover crop residue and herbicide management on the foliar arthropod community in no-till soybeans. Agronomy 2018, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Shearin, A.F.; Reberg-Horton, S.C.; Gallandt, E.R. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Environ. Entomol. 2007, 36, 1140–1146. [Google Scholar] [CrossRef]
- Ward, M.J.; Ryan, M.R.; Curran, W.S.; Barbercheck, M.E.; Mortensen, D.A. Cover crops and disturbance influence activity-density of weed seed predators Amara aenea and Harpalus pensylvanicus (Coleoptera: Carabidae). Weed Sci. 2011, 59, 76–81. [Google Scholar] [CrossRef]
- Brust, G.E.; Stinner, B.R.; McCartney, D.A. Tillage and soil insecticide effects on predator-black cutworm (Lepidoptera: Noctuidae) interactions in corn agroecosystems. J. Econ. Entomol. 1985, 78, 1389–1392. [Google Scholar] [CrossRef]
- Hatten, T.D.; Bosque-Pérez, N.A.; Labonte, J.R.; Guy, S.O.; Eigenbrode, S.D. Effects of tillage on the activity density and biological diversity of carabid beetles in spring and winter crops. Environ. Entomol. 2007, 36, 356–368. [Google Scholar]
- Quinn, N.F.; Brainard, D.C.; Szendrei, Z. The effect of conservation tillage and cover crop residue on beneficial arthropods and weed seed predation in acorn squash. Environ. Entomol. 2016, 45, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, R.; Pisani-Gareau, T.; Smith, R.G.; Mullen, C.; Barbercheck, M. Cover crop and tillage intensities alter ground-dwelling arthropod communities during the transition to organic production. Renew. Agric. Food Syst. 2016, 31, 361–374. [Google Scholar] [CrossRef]
- Sunderland, K.; Samu, F. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: A review. Entomol. Expt. Appl. 2000, 95, 1–13. [Google Scholar] [CrossRef]
- Pretorius, R.J.; Hein, G.L.; Blankenship, E.E.; Purrington, F.F.; Wilson, R.G.; Bradshaw, J.D. Comparing the effects of two tillage operations on beneficial epigeal arthropod communities and their associated ecosystem services in sugar beets. J. Econ. Entomol. 2018, 111, 2617–2631. [Google Scholar] [CrossRef] [Green Version]
- Mashavakure, N.; Mashingaidze, A.B.; Musundire, R.; Nhamo, N.; Gandiwa, E.; Thierfelder, C.; Muposhi, V.K. Spider community shift in response to farming practices in a sub-humid agroecosystem of southern Africa. Agric. Ecosyst. Environ. 2018, 272, 237–245. [Google Scholar] [CrossRef]
- Blumberg, A.Y.; Crossley, D.A., Jr. Comparison of soil surface arthropod populations in conventional tillage, no-tillage and old field systems. Agro-Ecosystems 1983, 8, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, E.; Fernández-Anero, F.J.; Ruiz, P.; Campos, M. Soil arthropod abundance under conventional and no tillage in a Mediterranean climate. Soil Tillage Res. 2006, 85, 229–233. [Google Scholar] [CrossRef]
- Depalo, L.; Burgio, G.; Magagnoli, S.; Sommaggio, D.; Montemurro, F.; Canali, S.; Masetti, A. Influence of cover crop termination on ground dwelling arthropods in organic vegetable systems. Insects 2020, 11, 445. [Google Scholar] [CrossRef]
- Koppel, A.L.; Herbert, D.A., Jr.; Kuhar, T.P.; Kamminga, K. Survey of stink bug (Hemiptera: Pentatomidae) egg parasitoids in wheat, soybean, and vegetable crops in southeast Virginia. Environ. Entomol. 2009, 38, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, D.M.; Ruberson, J.R. Crop-specific mortality of southern green stink bug eggs in Bt- and non-Bt cotton, soybean and peanut. Biocontrol Sci. Technol. 2012, 22, 1417–1428. [Google Scholar]
- Jones, A.L.; Jennings, D.E.; Hooks, C.R.R.; Shrewsbury, P.M. Sentinel eggs underestimate rates of parasitism of the exotic brown marmorated stink bug, Halyomorphahalys. Biol. Control 2014, 78, 61–66. [Google Scholar] [CrossRef]
- Cornelius, M.L.; Dieckhoff, C.; Vinyard, B.T.; Hoelmer, K.A. Parasitism and predation on sentinel egg masses of the brown marmorated stink bug (Hemiptera: Pentatomidae) in three vegetable crops: Importance of dissections for evaluating the impact of native parasitoids on an exotic pest. Environ. Entomol. 2016, 45, 1536–1542. [Google Scholar] [CrossRef]
- Nilson, C. Impact of ploughing on emergence of pollen beetle parasitoids after hibernation. Z. Angew. Entomol. 1985, 100, 302–308. [Google Scholar] [CrossRef]
- Tillman, G.; Schomberg, H.; Phatak, S.; Mullinix, B.; Lachnicht, S.; Timper, P.; Olson, D. Influence of cover crops on insect pests and predators in conservation tillage cotton. J. Econ. Entomol. 2004, 97, 1217–1232. [Google Scholar] [CrossRef]
- Del Pozo-Valdivia, A.I.; Reisig, D.D.; Bacheler, J.S. Impacts of tillage, maturity group, and insecticide use on Megacopta cribraria (Hemiptera: Plataspidae) populations in double-cropped soybean. J. Econ. Entomol. 2017, 110, 168–176. [Google Scholar]
- West, T.D.; Griffith, D.R.; Steinhardt, G.C.; Kladivko, E.J.; Parsons, S.D. Effect of tillage and rotation on agronomic performance of corn and soybean: Twenty-year study on dark silty clay loam soil. J. Prod. Agric. 1996, 9, 241–248. [Google Scholar] [CrossRef]
- Pedersen, P.; Lauer, J.G. Soybean growth and development response to rotation sequence and tillage system. Agron. J. 2004, 96, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, R.I.; Siemens, J.C.; Bullock, D.G. Growth analysis of soybean under no-tillage and conventional tillage systems. Agron. J. 1999, 91, 928–933. [Google Scholar] [CrossRef]
- DeFelice, M.S.; Carter, P.R.; Mitchell, S.B. Influence of tillage on corn and soybean yield in the United States and Canada. Crop Manag. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
Year | Location | Task | Date |
---|---|---|---|
2016 | Beltsville | Post-harvest treatments applied | 4 October |
2016 | Keedysville | CP plots chisel plowed | 23 September |
Cover crop planted in CC plots | 26 September | ||
2017 | Beltsville | CP treatment ground prepared | 2 May |
Cover crop/weed burndown | 10 May | ||
Soybean planted | 22 May | ||
Postemergence herbicide applied | 8 July | ||
Soybean harvested | 21 October | ||
2017 | Keedysville | CP plots prepared for planting crop | 2 May |
Cover crop/weed burndown | 10 May | ||
Soybean planted | 22 May | ||
Postemergence herbicide applied | 8 July | ||
Soybean harvested | 25 October | ||
2017 | Beltsville | Post-harvest treatments applied | 27 October |
2017 | Keedysville | Post-harvest treatments applied | 27 October |
2018 | Beltsville | CP treatment ground prepared | 26 May |
Cover crop/weeds terminated | 25 May | ||
Soybean planted | 29 May | ||
Postemergence herbicide applied | 19 July | ||
Soybean harvested | 1 November | ||
2018 | Keedysville | CP treatment ground prepared | 29 May |
Cover crop/weed burndown | 29 May | ||
Soybean planted | 29 May | ||
Postemergence herbicide applied | 19 July | ||
Soybean harvested | 26 October |
Location/ Year/ Feeding Guild | Treatment | CM | WM | ||
---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | ||
Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | ||
all arthropods | CC | 22.66 ± 2.21 a | 28.71 ± 2.46 a | 26.92 ± 1.70 a | 16.63 ± 1.64 a |
CP | 26.84 ± 2.08 b | 29.25 ± 3.05 a | 29.59 ± 2.22 a | 20.25 ± 1.48 b | |
CS | 22.59 ± 2.09 a | 26.46 ± 3.55 a | 27.66 ± 2.22 a | 19.42 ± 1.71 ab | |
all predators | CC | 2.47 ± 0.41 a | 1.80 ± 0.16 a | 1.79 ± 0.18 a | 1.87 ± 0.19 a |
CP | 2.92 ± 0.37 b | 1.68 ± 0.12 a | 1.70 ± 0.13 a | 2.32 ± 0.26 b | |
CS | 2.70 ± 0.45 ab | 1.73 ± 0.17 a | 1.91 ± 0.19 a | 2.58 ± 0.45 b | |
chewing predators | CC | 1.71 ± 0.57 a | 1.71 ± 0.57 a | 1.11 ± 0.11 a | 1.00 ± 0.00 a |
CP | 1.29 ± 0.29 a | 1.29 ± 0.29 a | 1.50 ± 0.20 a | 1.65 ± 0.28 a | |
CS | 1.00 ± 0.00 a | 1.00 ± 0.00 0a | 1.23 ± 0.17 a | 3.06 ± 1.33 b | |
sucking predators | CC | 2.56 ± 0.45 a | 1.49 ± 0.11 a | 2.56 ± 0.45 a | 1.49 ± 0.11 a |
CP | 3.09 ± 0.40 a | 1.71 ± 0.12 a | 3.09 ± 0.40 a | 1.71 ± 0.12 a | |
CS | 2.98 ± 0.52 a | 1.47 ± 0.11 a | 2.98 ± 0.52 a | 1.47 ± 0.11 a | |
all herbivores | CC | 2.14 ± 0.17 a | 3.68 ± 0.51 ab | 2.65 ± 0.31 a | 2.31 ± 0.33 a |
CP | 2.77 ± 0.28 b | 3.98 ± 0.53 a | 2.87 ± 0.31 b | 2.38 ± 0.21 a | |
CS | 2.38 ± 0.22 a | 3.23 ± 0.42 b | 2.26 ± 0.20 a | 2.20 ± 0.22 a | |
chewing herbivores | CC | 1.52 ± 0.12 ab | 1.52 ± 0.12 ab | 1.71 ± 0.20 a | 1.68 ± 0.18 a |
CP | 1.88 ± 0.20 a | 1.88 ± 0.20 a | 1.66 ± 0.15 a | 1.74 ± 0.17 a | |
CS | 1.49 ± 0.20 b | 1.49 ± 0.20 b | 1.41 ± 0.1 a | 2.07 ± 0.25 a | |
sucking herbivores | CC | 2.37 ± 0.22 a | 4.26 ± 0.62 ab | 3.22 ± 0.47 a | 2.67 ± 0.51 a |
CP | 3.13 ± 0.38 b | 4.35 ± 0.60 a | 3.48 ± 0.45 b | 2.91 ± 0.35 a | |
CS | 2.68 ± 0.28 ab | 3.55 ± 0.48 b | 2.73 ± 0.31 a | 2.28 ± 0.31 a | |
parasitoids | CC | 1.32 ± 0.12 a | 1.11 ± 0.06 a | 1.23 ± 0.11 a | 1.09 ± 0.09 a |
CP | 1.24 ± 0.07 a | 1.27 ± 0.14 a | 1.24 ± 0.08 a | 1.12 ± 0.07 a | |
CS | 1.20 ± 0.06 a | 1.09 ± 0.05 a | 1.19 ± 0.08 a | 1.06 ± 0.06 a | |
spiders | CC | 1.10 ± 0.05 a | 1.17 ± 0.07 a | 1.40 ± 0.13 a | 1.19 ± 0.14 a |
CP | 1.14 ± 0.07 a | 1.04 ± 0.04 a | 1.24 ± 0.07 a | 1.12 ± 0.08 a | |
CS | 1.12 ± 0.07 a | 1.53 ± 0.21 a | 1.25 ± 0.07 a | 1.00 ± 0.00 a |
Feeding Guild | Treatment | CM | WM |
---|---|---|---|
Mean ± SE | Mean ± SE | ||
all arthropods | CC | 5.04 ± 1.00 a | 4.52 ± 0.39 a |
CP | 5.33 ± 1.33 b | 3.92 ± 0.78 b | |
CS | 3.30 ± 0.50 c | 3.96 ± 0.36 c | |
all predators | CC | 3.61 ± 0.78 a | 4.47 ± 1.14 a |
CP | 5.80 ± 2.66 a | 2.35 ± 0.47 b | |
CS | 4.17 ± 1.00 b | 2.24 ± 0.29 b | |
chewing predators | CC | 4.13 ± 1.01 a | 3.12 ± 0.48 a |
CP | 6.00 ± 2.80 a | 2.11 ± 0.40 b | |
CS | 4.56 ± 1.09 b | 2.26 ± 0.33 b | |
sucking predators | CC | 2.00 ± 0.52 a | 13.40 ± 7.49 a |
CP | 2.00 ± NA *,b | 4.50 ± 3.50 a | |
CS | 1.00 ± 0.00 c | 2.17 ± 0.54 b | |
all herbivores | CC | 2.38 ± 0.35 a | 5.00 ± 1.45 a |
CP | 1.96 ± 0.35 b | 12.73 ± 8.47 b | |
CS | 1.85 ± 0.29 b | 5.43 ± 1.69 a | |
chewing herbivores | CC | 2.73 ± 0.44 a | 5.79 ± 1.71 a |
CP | 2.32 ± 0.50 b | 20.22 ± 13.84 b | |
CS | 1.67 ± 0.39 b | 8.44 ± 2.74 c | |
sucking herbivores | CC | 1.30 ± 0.21 a | 1.20 ± 0.20 a |
CP | 1.22 ± 0.15 a | 1.50 ± 0.34 a | |
CS | 2.13 ± 0.43 b | 1.42 ± 0.23 a | |
parasitoids | CC | 1.17 ± 0.17 a | 1.00 ± 0.00 a |
CP | 1.11 ± 0.11 a | 1.09 ± 0.09 a | |
CS | 1.11 ± 0.11 a | 1.13 ± 0.13 a | |
spiders | CC | 2.51 ± 0.55 a | 1.65 ± 0.20 a |
CP | 4.53 ± 1.42 b | 2.00 ± 0.36 a | |
CS | 2.69 ± 0.54 a | 2.13 ± 0.39 a |
2017 | 2018 | ||
---|---|---|---|
Egg Fate | Treatment | Mean ± SE * | Mean ± SE |
parasitism | CC | 19.69 ± 7.00 a | 17.47 ± 6.06 a |
CP | 19.83 ± 5.82 a | 33.83 ± 9.59 b | |
CS | 15.06 ± 5.54 b | 49.67 ± 25.52 c | |
predation | CC | 15.19 ± 5.79 a | 25.00 ± 8.44 a |
CP | 12.50 ± 5.10 a | 4.17 ± 1.58 b | |
CS | 16.06 ± 6.48 a | 2.80 ± 2.04 c | |
hatch | CC | 75.25 ± 23.18 a | 92.80 ± 32.70 a |
CP | 58.67 ± 17.87 b | 89.22 ± 27.58 b | |
CS | 61.53 ± 16.26 b | 94.87 ± 30.85 a |
2017 | 2018 | |||
---|---|---|---|---|
Egg Fate | Insect Species ** | Mean ± SE | Insect Species | Mean ± SE |
parasitism | BMSB | 0.00 ± 0.00 a | BMSB | 0.34 ± 0.14 abc |
BSB | 0.86 ± 0.06 b | BSB | 0.81 ± 0.05 bc | |
GSB | 0.16 ± 0.03 a | GSB | 0.18 ± 0.03 a | |
HB | 1.00 ± 0.00 | KB | 0.00 ± 0.00 | |
KB *** | 0.00 ± 0.00 | RSSB | 1.00 ± 0.00 | |
SSB | 1.00 ± 0.00 b | SSB | 0.67 ± 0.33 abc | |
predation | BMSB | 0.72 ± 0.19 a | BMSB | 0.20 ± 0.09 a |
BSB | 0.05 ± 0.02 b | BSB | 0.06 ± 0.03 ab | |
GSB | 0.16 ± 0.03 b | GSB | 0.09 ± 0.02 b | |
HB | 0.00 ± 00.0 | KB | 0.00 ± 0.00 | |
KB | 0.01 ± 0.01 | RSSB | 0.00 ± 0.00 | |
SSB | 0.00 ± 0.00 b | SSB | 0.00 ± 0.00 ab | |
hatch | BMSB | 0.25 ± 0.19 abc | BMSB | 0.32 ± 0.11 ab |
BSB | 0.03 ± 0.03 bc | BSB | 0.07 ± 0.03 ab | |
GSB | 0.59 ± 0.04 a | GSB | 0.65 ± 0.04 b | |
HB | 0.00 ± 0.00 | KB | 0.87 ± 0.03 | |
KB | 0.77 ± 0.04 | RSSB | 0.00 ± 0.00 | |
SSB | 0.00 ± 0.00 bc | SSB | 0.33 ± 0.33 ab |
2017 | 2018 | ||
---|---|---|---|
Egg Fate | Treatment | Mean ± SE * | Mean ± SE |
Mortality | CC | 9.45 ± 7.55 a | 5.79 ± 2.52 a |
CP | 16.04 ± 4.67 a | 9.75 ± 2.13 a | |
CS | 19.18 ± 8.54 a | 6.83 ± 1.84 a | |
Hatch | CC | 78.68 ± 11.09 a | 76.08 ± 7.66 a |
CP | 77.29 ± 4.18 a | 90.25 ± 2.13 a | |
CS | 75.06 ± 7.45 a | 93.17 ± 1.84 a |
Treatment | 2017 | 2017 | 2018 | 2018 |
---|---|---|---|---|
CM | WM | CM | WM | |
Mean ± SE (kg/ha) | Mean ± SE (kg/ha) | Mean ± SE (kg/ha) | Mean ± SE (kg/ha) | |
CC | 5345.0 ± 222.9 a | 3161.0 ± 667.7 a | 4626.7 ± 167.1 a | 4613.8 ± 174.1 a |
CP | 5603.2 ± 194.9 a | 5299.2 ± 136.5 b | 4277.9 ± 265.8 a | 4343.2 ± 54.7 a |
CS | 5440.4 ± 524.0 a | 5283.8 ± 262.7 b | 4254.7 ± 158.3 a | 4260.2 ± 65.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leslie, A.W.; McCluen, S.R.; Hooks, C.R.R. Impact of Post-Harvest Management Practices in Corn (Zea mays L.) Fields on Arthropods in Subsequent Soybean (Glycine max [L.] Merr.) Plantings. Insects 2023, 14, 93. https://doi.org/10.3390/insects14010093
Leslie AW, McCluen SR, Hooks CRR. Impact of Post-Harvest Management Practices in Corn (Zea mays L.) Fields on Arthropods in Subsequent Soybean (Glycine max [L.] Merr.) Plantings. Insects. 2023; 14(1):93. https://doi.org/10.3390/insects14010093
Chicago/Turabian StyleLeslie, Alan W., Scott R. McCluen, and Cerruti R. R. Hooks. 2023. "Impact of Post-Harvest Management Practices in Corn (Zea mays L.) Fields on Arthropods in Subsequent Soybean (Glycine max [L.] Merr.) Plantings" Insects 14, no. 1: 93. https://doi.org/10.3390/insects14010093
APA StyleLeslie, A. W., McCluen, S. R., & Hooks, C. R. R. (2023). Impact of Post-Harvest Management Practices in Corn (Zea mays L.) Fields on Arthropods in Subsequent Soybean (Glycine max [L.] Merr.) Plantings. Insects, 14(1), 93. https://doi.org/10.3390/insects14010093