Current Knowledge on Chemosensory-Related Candidate Molecules Potentially Involved in Tick Olfaction via Haller’s Organ
Abstract
:Simple Summary
Abstract
1. Introduction
2. Tick Olfaction and Haller’s Organ
2.1. Haller’s Organ: Olfactory Role and Its Structural Divergence
2.2. Olfactory Glomeruli and Its Neural Projection from the Haller’s Organ
2.3. Tick Behavioral and Chemosensory Responses to Host-Related Attractants
2.3.1. Behavioral Response to Host Odor and Related Attractants
2.3.2. Neurophysiological Response to Host-Related Attractants; Using Haller’s-Organ-Based Olfactory Sensilla
3. Candidate Chemoreceptors Biasedly Expressed in Haller’s Organ
3.1. Ionotropic Receptors (IRs)
3.2. Gustatory Receptors (GRs)
3.3. G-Protein Coupled Receptors (GPCRs)
4. Potential Binding Proteins Expressed in Haller’s Organ
4.1. Niemann–Pick Protein Type C2 (NPC2s)
4.2. Microplusin-like (ML) Proteins
4.3. Odorant-Binding Protein-like (OBPL) Proteins
4.4. Binding Protein Features Shared by the Candidate NPC2s and MLs Expressed in Haller’s Organ
Multiple Sequence Alignment on Representative Candidate NPC2s and MLs in Tick
5. Miscellaneous: Poorly Evident Molecules Expressed in Haller’s Organ
Gene Family | Tick Specie | No. of Genes | FL Biased | In Palps | Descriptions Authors | ||
---|---|---|---|---|---|---|---|
EE | DE | ||||||
Chemoreceptors | |||||||
IR | Is | 125 | 1 | 8 | - | Primarily identified foreleg-biased IRs and GRs | [52] |
GR | Is | 28 | - | 6 | - | ||
GPCR | Dv | - | 8 | - | Argued to biasedly express in Haller’s organ of I. scapularis. | [16] | |
Potential binding proteins | |||||||
NPC2 | Aa | 2 | - | 1 | 1 | Low level in FL, and unquantifiable in palp | [67] |
Is | 12 | 2 | 5 | - | Expressed at various levels, with seldom FL biased | [52] | |
Ir | 2 | - | 1 | 1 | Detected by IHC, good ligand-binding affinity | [69] | |
ML | Aa | 4 | 2 | 1 | 1 | Lack their antimicrobial basics, obtain a ligand-binding cavity, | [67] |
ML (A-H) | Is | 57 | 1 | 50 | 1 | Shared common structure with OBPLs. (DE, RNAseq) | [52] |
OBPL | Aa | 2 | - | 2 | 1 | Structure similar to insect OBPs, comparable cavity. | [67] |
Miscellaneous: poorly evident molecules expressed inHaller’s organ | |||||||
Lipocalin | Aa | 1 | 1 | - | - | Have 2 to 5 conserved cysteine residues, and are expressed at various levels. | [67] |
Is | 3 | 3 | - | [52] | |||
DMAL | Aa | 2 | 2 | - | - | Homolog model: insect Derp7 allergen proteins | [67] |
Neto-like | Aa | 1 | 1 | - | Homolog model: insect neuropilin-1 proteins | [67] | |
ODEs | Dv | 7 | 7 | - | - | The first report on tick olfaction-related enzyme | [16] |
6. Evolutionary Relationship of Tick Chemosensory-Related Candidate Molecules
7. Does the Molecular Basis of Olfactory Chemoreception in Ticks Differ from Insects?
8. Major Limitations in Identifying the Tick Chemosensory-Related Candidate Molecules
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gondard, M.; Cabezas-Cruz, A.; Charles, R.A.; Vayssier-Taussat, M.; Albina, E.; Moutailler, S. Ticks and tick-borne pathogens of the Caribbean: Current understanding and future directions for more comprehensive surveillance. Front. Cell. Infect. Microbiol. 2017, 7, 490. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Wang, J.; Shi, W.; Du, L.; Sun, Y.; Zhan, W.; Jiang, J.F.; Wang, Q.; Zhang, B.; Ji, P.; et al. Tick genome and microbiome consortium (TIGMIC); large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell 2020, 182, 1328–1340. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect. Int. J. Parasitol. Parasites Wildl. 2015, 4, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, Z.I.; Hu, S.H.; Chen, W.J.; Arijo, A.G.; Xiao, C.W. Importance of ticks and their chemical and immunological control in livestock. J. Zhejiang Univ. Sci. B 2006, 7, 912–921. [Google Scholar] [CrossRef]
- Barker, S.C.; Walker, A.R. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 2014, 3816, 1–144. [Google Scholar] [CrossRef]
- Beard, C.B.; Occi, J.; Bonilla, D.L.; Egizi, A.M.; Fonseca, D.M.; Mertins, J.W.; Backenson, B.P.; Bajwa, W.I.; Barbarin, A.M.; Bertone, M.A.; et al. Multistate infestation with the exotic disease–vector tick haemaphysalis longicornis—United States. Morb. Mortal. Wkly. Rep. 2018, 67, 1310–1313. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Pena, A.; de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antivir. Res. 2014, 08, 104–128. [Google Scholar] [CrossRef]
- Liu, X.Y.; Bonnet, S.I. Hard tick factors implicated in pathogen transmission. PLoS Negl. Trop. Dis. 2014, 8, e2566. [Google Scholar] [CrossRef]
- Leal, B.; Zamora, E.; Fuentes, A.; Thomas, D.B.; Dearth, R.K. Questing by tick larvae (Acari: Ixodidae): A review of the influences that affect off-host survival. Ann. Entomol. Soc. Am. 2020, 113, 425–438. [Google Scholar] [CrossRef]
- Dethier, V.G. The sensory physiology of blood-sucking arthropods. Exp. Parasitol. 1957, 6, 68–122. [Google Scholar] [CrossRef]
- Peng, G.; Shi, X.; Kadowaki, T. Evolution of TRP channels inferred by their classification in diverse animal species. Mol. Phylogenet. Evol. 2015, 84, 145–157. [Google Scholar] [CrossRef]
- Moyer, M.W. The growing global battle against blood-sucking ticks. Nature 2015, 524, 406–408. [Google Scholar] [CrossRef] [Green Version]
- Apanaskevich, D.A.; Oliver, J.H.J. Life Cycles and Natural History of Ticks. In Biology of TIcks. 1; Sonenshine, D.E., Roe, R.M., Eds.; Oxford University Press: New York, NY, USA, 2014; pp. 59–73. [Google Scholar]
- Carr, A.L.; Roe, M. Acarine attractants: Chemoreception, bioassay, chemistry and control. Pestic. Biochem. Physiol. 2016, 131, 60–79. [Google Scholar] [CrossRef] [Green Version]
- Romanenko, V.; Leonovich, S. Long-term monitoring and population dynamics of ixodid ticks in Tomsk city (Western Siberia). Exp. Appl. Acarol. 2015, 66, 103–118. [Google Scholar] [CrossRef]
- Carr, A.L.; Mitchell, R.D.; Dhammi, A., III; Bissinger, B.W.; Sonenshine, D.E.; Roe, R.M. Tick Haller’s organ, a new paradigm for arthropod olfaction: How ticks differ from insects. Int. J. Mol. Sci. 2017, 18, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonenshine, D.E.; Roe, R.M. Overview people, ticks, and animal. In Biology of Ticks, 2nd ed.; Sonenshine, D.E., Roe, R.M., Eds.; Oxford University Press: New York, NY, USA, 2014; Volume 1, pp. 3–16. [Google Scholar]
- Gulia-Nuss, M.; Nuss, A.B.; Meyer, J.M.; Sonenshine, D.E.; Roe, R.M.; Waterhouse, R.M.; Sattelle, D.B.; de la Fuente, J.; Ribeiro, J.M.; Megy, K.; et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016, 7, 10507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, L.M.F.; Li, A.Y.; Olafson, P.U.; Renthal, R.; Bauchan, G.R.; Lohmeyer, K.H.; León, A.A.P.D. Neuronal projections from the Haller’s organ and palp sensilla to the synganglion of Amblyomma americanum. Rev. Bras. Parasitol. Vet. 2016, 25, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.F.; Borges, L.M.F. Electrophysiological responses of the olfactory receptors of the tick Amblyomma cajennense (Acari: Ixodidae) to host-related and tick pheromone-related synthetic compounds. Acta Trop. 2012, 124, 192–198. [Google Scholar] [CrossRef]
- Ferreira, L.L.; Soares, S.F.; de Oliveira Filho, J.G.; Oliveira, T.T.; de León, A.A.P.; Borges, L.M.F. Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation. Ticks Tick Borne Dis. 2015, 6, 228–233. [Google Scholar] [CrossRef]
- Koloski, C.W.; LeMoine, C.M.; Klonowski, A.R.; Smith, C.M.; Cassone, B.J. Molecular evidence for the inhibition of cytochrome p450s and cholinesterases in ticks by the repellent DEET. Ticks Tick Borne Dis. 2019, 10, 515–522. [Google Scholar] [CrossRef]
- Josek, T.; Allan, B.F.; Alleyne, M. Morphometric analysis of olfactory organ in male and female ticks (Acari: Ixodidae). J. Med. Entomol. 2018, 3, 547–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonovich, S.A. Structure of Haller’s organ and taxonomy of hard ticks of the subfamily Amblyomminae (Family Ixodidae). Entmol. Rev. 2021, 101, 709–724. [Google Scholar] [CrossRef]
- Buczek, A.; Buczek, L.; Kusmierz, A.; Olszewski, K.; Jasik, K. Ultrastructural investigations of Haller’s organ in Dermacentor reticulatus (Fabr.) (Acari: Ixodida: Ixodidae). In Acarid Phylogeny and Evolution: Adaptation in Mites and Ticks; Bernini, F., Nannelli, R., Nuzzaci, G., de Lillo, E., Eds.; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Carr, A.L.; Salgado, V.L. Ticks home in on body heat: A new understanding of Haller’s organ and repellent action. PLoS ONE 2019, 14, e0221659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szlendak, E.; Oliver, J.H.J.r. Anatomy of synganglia, including their neurosecretory regions, in unfed, virgin female Ixodes scapularis say (Acari: Ixodidae). J. Morphol. 1992, 213, 349–364. [Google Scholar] [CrossRef]
- Menezes, K.M.F.; Oliveira Filho, J.G.; Ferreira, L.L.; Borges, L.M.F. First neuronal projection from Haller’s organ to the synganglion and three-dimensional reconstruction of Amblyomma sculptum olfactory lobe. Ticks Tick Borne Dis. 2021, 4, 12. [Google Scholar] [CrossRef]
- Ghaninia, M.; Hansson, B.S.; Ignell, R. The antennal lobe of the African malaria mosquito, Anopheles gambiae—Innervation and three-dimensional reconstruction. Arthropod. Struct. Dev. 2007, 36, 23–39. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, F.; Liu, N. Three-dimensional structure of the antennal lobe in the Southern house mosquito Culex quinquefasciatus. Insect Sci. 2021, 28, 93–102. [Google Scholar] [CrossRef]
- Van Wijk, M.; Wadman, W.J.; Sabelis, M.W. Morphology of the olfactory system in the predatory mite Phytoseiulus Persimilis. Exp. Appl. Acarol. 2006, 40, 217–229. [Google Scholar] [CrossRef]
- Galizia, C.G.; McIlwrath, S.L.; Menzel, R.A. digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy. Cell Tissue Res. 1999, 295, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Hummel, N.A.; Li, A.Y.; Witt, C.M. Serotonin-like immunoreactivity in the central nervous system of two ixodid tick species. Exp. Appl. Acarol. 2007, 43, 265–278. [Google Scholar] [CrossRef]
- Lees, K.; Bowman, A.S. Tick neurobiology: Recent advances and the post-genomic era. Invertebr. Neurosci. 2007, 7, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Holmes, S.P.; Pietrantonio, P.V. Molecular cloning and functional expression of a serotonin receptor from the southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Mol. Biol. 2004, 13, 45–54. [Google Scholar] [CrossRef]
- Paine, S.H.; Kemp, D.H.; Allen, J.R. In vitro feeding of Dermacentor andersoni (Stiles)—Effects of histamine and other mediators. Parasitology 1983, 86, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R. Carbon dioxide as an attractant for certain ticks (Acarina: Argasidae and Ixodidae). Ann. Entomol. Soc. Am. 1962, 55, 605–606. [Google Scholar] [CrossRef]
- Carroll, J.F. Responses of three species of adult ticks (Acari: Ixodidae) to chemicals in the coats of principal and minor hosts. J. Med. Entomol. 1999, 36, 238–241. [Google Scholar] [CrossRef] [Green Version]
- Carroll, J.F. Interdigital gland substances of white-tailed deer and the response of host-seeking ticks (Acari: Ixodidae). J. Med. Entomol. 2001, 38, 114–117. [Google Scholar] [CrossRef]
- Sonenshine, D.E. Pheromones and other semiochemicals of ticks and their use in tick control. Parasitology 2004, 129, 405–425. [Google Scholar] [CrossRef]
- Carr, A.L.; Roe, R.M.; Arellano, C.; Sonenshine, D.E.; Schal, C.; Apperson, C.S. Responses of Amblyomma americanum and Dermacentor variabilis to odorants that attract haematophagous insects. Med. Vet. Entomol. 2013, 27, 86–95. [Google Scholar] [CrossRef]
- Faraone, N.; Light, M.; Scott, C.; MacPherson, S.; Hillier, N.K. Chemosensory and behavioural responses of Ixodes scapularis to natural products: Role of chemosensory organs in volatile detection. Insects 2020, 11, 502. [Google Scholar] [CrossRef]
- Osterkamp, J.; Wahl, U.; Schmalfuss, G.; Haas, W. Host odor recognition in two tick species coded in a blend of vertebrate volatiles. J. Comp. Physiol. 1999, 185, 59–67. [Google Scholar] [CrossRef]
- Gherman, C.M.; Mihalca, A.D.; Dumitrache, M.O.; Györke, A.; Oroian, I.; Sandor, M.; Cozma, V. CO2 flagging—An improved method for the collection of questing ticks. Parasit. Vectors 2012, 5, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonovich, S.A. Phenol and lactone receptors in the distal sensilla of the Haller’s organ in Ixodes ricinus ticks and their possible role in host perception. Exp. Appl. Acarol. 2004, 32, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Josek, T.; Sperrazza, J.; Alleyne, M.; Syed, Z. Neurophysiological and behavioral responses of blacklegged ticks to host odors. J. Insect. Physiol. 2021, 128, 104175. [Google Scholar] [CrossRef] [PubMed]
- Bohbot, J.D.; Dickens, J.C. Selectivity of odorant receptors in insects. Front. Cell. Neurosci. 2012, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimal, S.; Lee, Y. The multidimensional ionotropic receptors of Drosophila melanogaster. Insect Mol. Biol. 2018, 27, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croset, V.; Rytz, R.; Cummins, S.F.; Budd, A.; Brawand, D.; Kaessmann, H.; Gibson, T.J.; Benton, R. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010, 6, e1001064. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Pitts, R.J.; Bohbot, J.D.; Jones, P.L.; Wang, G.; Zwiebel, L.J. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol. 2010, 8, e1000467. [Google Scholar] [CrossRef] [Green Version]
- Rytz, R.; Croset, V.; Benton, R. Ionotropic Receptors (IRs): Chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol. 2013, 43, 888–897. [Google Scholar] [CrossRef] [Green Version]
- Josek, T.; Walden, K.K.; Allan, B.F.; Alleyne, M.; Robertson, H.M. A foreleg transcriptome for Ixodes scapularis ticks: Candidates for chemoreceptors and binding proteins that might be expressed in the sensory Haller’s organ. Ticks Tick-Borne Dis. 2018, 9, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Rao, X.J.; Li, M.Y.; Feng, M.F.; He, M.Z.; Li, S.G. Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. Part D Genom. Proteom. 2015, 13, 44–51. [Google Scholar] [CrossRef]
- Niu, D.J.; Liu, Y.; Dong, X.T.; Dong, S.L. Transcriptome based identification and tissue expression profiles of chemosensory genes in Blattella germanica (Blattaria: Blattidae). Comp. Biochem. Physiol. Part D Genom. Proteom. 2016, 18, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Corey, E.A.; Bobkov, Y.; Ukhanov, K.; Ache, B.W. Ionotropic crustacean olfactory receptors. PLoS ONE 2013, 8, e60551. [Google Scholar] [CrossRef]
- Eyun, S.I.; Soh, H.Y.; Posavi, M.; Munro, J.B.; Hughes, D.S.T.; Murali, S.C.; Qu, J.; Dugan, S.; Lee, S.L.; Chao, H.; et al. Evolutionary history of chemosensory-related gene families across the Arthropoda. Mol. Biol. Evol. 2017, 34, 1838–1862. [Google Scholar] [CrossRef] [Green Version]
- Benton, R. Multigene family evolution: Perspectives from insect chemoreceptors. Trends Ecol. Evol. 2015, 30, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.M.; Carlson, J.R. Drosophila chemoreceptors: A molecular interface between the chemical world and the brain. Trends Genet. 2015, 31, 683–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopf, T.A.; Morinaga, S.; Ihara, S.; Touhara, K.; Marks, D.S.; Benton, R. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat. Commun. 2015, 6, e6077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insel, P.A.; Sriram, K.; Gorr, M.W.; Wiley, S.Z.; Michkov, A.; Salmerón, C.; Chinn, A.M. GPCRomics: An approach to discover GPCR drug targets. Trends Pharmacol. Sci. 2019, 40, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Nuss, A.B.; Ejendal, K.F.; Doyle, T.B.; Meyer, J.M.; Lang, E.G.; Watts, V.J.; Hill, C.A. Dopamine receptor antagonists as new mode-of-action insecticide leads for control of Aedes and Culex mosquito vectors. PLoS Negl. Trop. Dis. 2015, 9, e0003515. [Google Scholar] [CrossRef]
- Liu, N.; Li, T.; Wang, Y.; Liu, S. G-Protein Coupled Receptors (GPCRs) in insects-a potential target for new insecticide development. Molecules 2021, 26, 2993. [Google Scholar] [CrossRef]
- Munoz, S.; Guerrero, F.D.; Kellogg, A.; Heekin, A.M.; Leung, M.Y. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller’s organ, of the cattle tick, Rhipicephalus australis. PLoS ONE 2017, 12, e0172326. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, P.; Iovinella, I.; Felicioli, A.; Dani, F.R. Soluble proteins of chemical communication: An overview across arthropods. Front. Physiol. 2014, 5, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, Y.; Tsuchiya, W.; Fujii, T.; Fujimoto, Z.; Miyazawa, M.; Ishibashi, J.; Matsuyama, S.; Ishikawa, Y.; Yamazaki, T. Niemann-Pick type C2 protein mediating chemical communication in the worker ant. Proc. Natl. Acad. Sci. USA 2014, 111, 3847–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizueta, J.; Frías-López, C.; Macías-Hernández, N.; Arnedo, M.A.; Sánchez-Gracia, A.; Rozas, J. Evolution of chemosensory gene families in arthropods: Insight from the first inclusive comparative transcriptome analysis across spider appendages. Genome Biol. Evol. 2017, 9, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Renthal, R.; Manghnani, L.; Bernal, S.; Qu, Y.; Griffith, W.P.; Lohmeyer, K.; Guerrero, F.D.; Borges, L.M.F.; Pérez de León, A. The chemosensory appendage proteome of Amblyomma americanum (Acari: Ixodidae) reveals putative odorant-binding and other chemoreception-related proteins. Insect Sci. 2017, 5, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Iovinella, I.; Dani, F.R.; Pelosi, P.; Wang, G. Chemosensory Proteins: A Versatile Binding Family. In Olfactory Concepts of Insect Control—Alternative to Insecticides; Picimbon, J.F., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Iovinella, I.; Ban, L.; Song, L.; Pelosi, P.; Dani, F.R. Proteomic analysis of castor bean tick Ixodes ricinus: A focus on chemosensory organs. Insect Biochem. Mol. Biol. 2016, 78, 58–68. [Google Scholar] [CrossRef]
- Silva, F.D.; Rezende, C.A.; Rossi, D.C.; Esteves, E.; Dyszy, F.H.; Schreier, S.; Gueiros-Filho, F.; Campos, C.B.; Pires, J.R.; Daffre, S. Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J. Biol. Chem. 2009, 284, 34735–34746. [Google Scholar] [CrossRef] [Green Version]
- Feyereisen, R. Insect CYP Genes and P450 Enzymes. In Insect Molecular Biology and Biochemistry; Academic Press: Cambridge, MA, USA, 2012; pp. 236–316. [Google Scholar] [CrossRef]
- Koloski, C.W.; Cassone, B.J. Transcriptional profiling of Dermacentor variabilis (Acari: Ixodidae) provides insights into the role of the Haller’s organ in spatial DEET recognition. Ticks Tick Borne Dis. 2021, 13, 101827. [Google Scholar] [CrossRef] [PubMed]
- Xiu, C.; Xiao, Y.; Zhang, S.; Bao, H.; Liu, Z.; Zhang, Y. Niemann-Pick proteins type C2 are identified as olfactory related genes of Pardosa pseudoannulata by transcriptome and expression profile analysis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 29, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, J.; Pregitzer, P.; Breer, H.; Krieger, J. Access to the odor world: Olfactory receptors and their role for signal transduction in insects. Cell. Mol. Life Sci. 2018, 75, 485–508. [Google Scholar] [CrossRef]
- Wicher, D.; Miazzi, F. Insect odorant receptors: Function and regulation. In Insect Pheromone Biochemistry and Molecular Biology, 2nd ed.; Blomquist, G.J., Vogt, R.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 415–433. [Google Scholar] [CrossRef]
- Hallem, E.A.; Carlson, J.R. Coding of odors by a receptor repertoire. Cell 2006, 125, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Hallem, E.A.; Ho, M.G.; Carlson, J.R. The molecular basis of odor coding in the Drosophila antenna. Cell 2004, 117, 965–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larter, N.K.; Sun, J.S.; Carlson, J.R. Organization and function of Drosophila odorant binding proteins. eLife 2016, 5, e20242. [Google Scholar] [CrossRef]
- Menuz, K.; Larter, N.K.; Park, J.; Carlson, J.R. An RNA-Seq screen of the Drosophila antenna identifies a transporter necessary for ammonia detection. PLoS Genet. 2014, 11, e1004810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, F.G.; and Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: Origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 2011, 3, 476–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitch, O.; Papanicolaou, A.; Lennard, C.; Kirkbride, K.P.; Anderson, A. Chemosensory genes identified in the antennal transcriptome of the blowfly Calliphora stygia. BMC Genom. 2015, 16, 255. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhang, X.; Meng, R.; Liu, C.; Li, M.; Zhang, T. Identification of chemosensory genes from the antennal transcriptome of Semiothisa cinerearia. PLoS ONE 2020, 7, e0237134. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebremedhin, M.B.; Xu, Z.; Kuang, C.; Shumuye, N.A.; Cao, J.; Zhou, Y.; Zhang, H.; Zhou, J. Current Knowledge on Chemosensory-Related Candidate Molecules Potentially Involved in Tick Olfaction via Haller’s Organ. Insects 2023, 14, 294. https://doi.org/10.3390/insects14030294
Gebremedhin MB, Xu Z, Kuang C, Shumuye NA, Cao J, Zhou Y, Zhang H, Zhou J. Current Knowledge on Chemosensory-Related Candidate Molecules Potentially Involved in Tick Olfaction via Haller’s Organ. Insects. 2023; 14(3):294. https://doi.org/10.3390/insects14030294
Chicago/Turabian StyleGebremedhin, Mebrahtu Berhe, Zhengmao Xu, Ceyan Kuang, Nigus Abebe Shumuye, Jie Cao, Yongzhi Zhou, Houshuang Zhang, and Jinlin Zhou. 2023. "Current Knowledge on Chemosensory-Related Candidate Molecules Potentially Involved in Tick Olfaction via Haller’s Organ" Insects 14, no. 3: 294. https://doi.org/10.3390/insects14030294
APA StyleGebremedhin, M. B., Xu, Z., Kuang, C., Shumuye, N. A., Cao, J., Zhou, Y., Zhang, H., & Zhou, J. (2023). Current Knowledge on Chemosensory-Related Candidate Molecules Potentially Involved in Tick Olfaction via Haller’s Organ. Insects, 14(3), 294. https://doi.org/10.3390/insects14030294