An Improved Chromosome-Level Genome Assembly of the Firefly Pyrocoelia pectoralis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Feeding Scheme
2.2. Karyotype Analysis
2.3. Hi-C Library Preparation and Chromosome Assembly by Hi-C Data
2.4. Genome Annotation
2.5. Identification of Homologous and Orthologous Gene Sets
2.6. Phylogenetic Analysis
2.7. Species-Specific Genes and Gene Family Expansion and Contraction
3. Results
3.1. Chromosome-Level Genome Assembly
3.2. Mitochondrion Assembly
3.3. Genome Annotation
3.4. Gene Family Identification and Phylogenetic Relationships
3.5. Patterns of Gene Family Expansion and Contraction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, X. An Illustrated Handbook of Chinese Fireflies; The Commercial Press: Beijing, China, 2014. [Google Scholar]
- Lewis, S.M.; Cratsley, C.K. Flash signal evolution, mate choice, and predation in fireflies. Annu. Rev. Entomol. 2008, 53, 293–321. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Hastings, J.W. Fireflies and Other Beetles Luciferase-Dependent Bioluminescence Color and Rhythmic Displays. In Bioluminescence: Living Lights, Lights for Living; Harvard University Press: Cambridge, MA, USA; London, UK, 2013; pp. 31–43. [Google Scholar]
- Fu, X.; Meyer-Rochow, V.B. Larvae of the firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae) as possible biological agents to control the land snail Bradybaena ravida. Biol. Control 2013, 65, 176–183. [Google Scholar] [CrossRef]
- Wang, C. Observations on life history of terrestrial snail Bradybaena ravida. China Veg. 2008, 6, 27–29. [Google Scholar]
- Wang, Y.; Fu, X.; Lei, C.; Jeng, M.L.; Nobuyoshi, O. Biological characteristics of the terrestrial firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae). Coleopt. Bull. 2007, 61, 85–93. [Google Scholar] [CrossRef]
- Lau, T.; Ohba, N.; Arikawa, K.; Meyer-Rochow, V. Sexual dimorphism in the compound eye of Rhagophthalmus ohbai (Coleoptera: Rhagophthalmidae): II. Physiology and function of the eye of the male. J. Asia-Pac. Entomol. 2007, 10, 27–31. [Google Scholar] [CrossRef]
- Herrera, S.; Shank, T.M. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol. Phylogenetics Evol. 2016, 100, 70–79. [Google Scholar] [CrossRef]
- Webster, M.T.; Beaurepaire, A.; Neumann, P.; Stolle, E. Population genomics for insect conservation. Annu. Rev. Anim. Biosci. 2023, 11, 115–140. [Google Scholar] [CrossRef]
- Everitt, T.; Wallberg, A.; Christmas, M.J.; Olsson, A.; Hoffmann, W.; Neumann, P.; Webster, M.T. The genomic basis of adaptation to high elevations in Africanized honeybees. Genome Biol. Evol. 2023, 15, evad157. [Google Scholar] [CrossRef]
- Li, K.; Dong, Z.; Pan, M. Common strategies in silkworm disease resistance breeding research. Pest Manag. Sci. 2023, 79, 2287–2298. [Google Scholar] [CrossRef]
- Fu, X.; Li, J.; Tian, Y.; Quan, W.; Zhang, S.; Liu, Q.; Liang, F.; Zhu, X.; Zhang, L.; Wang, D. Long-read sequence assembly of the firefly Pyrocoelia pectoralis genome. GigaScience 2017, 6, gix112. [Google Scholar] [CrossRef]
- Dias, C.M.; Schneider, M.C.; Rosa, S.P.; Costa, C.; Cella, D.M. The first cytogenetic report of fireflies (Coleoptera, Lampyridae) from Brazilian fauna. Acta Zool. 2007, 88, 309–316. [Google Scholar] [CrossRef]
- Servant, N.; Varoquaux, N.; Lajoie, B.R.; Viara, E.; Chen, C.-J.; Vert, J.-P.; Heard, E.; Dekker, J.; Barillot, E. HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015, 16, 259. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Leung, H.C.; Yiu, S.M.; Chin, F.Y. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.-y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L. GMATA: An integrated software package for genome-scale SSR mining, marker development and viewing. Front. Plant Sci. 2016, 7, 1350. [Google Scholar] [CrossRef]
- Novák, P.; Neumann, P.; Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 2020, 15, 3745–3776. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wessler, S.R. MITE-Hunter: A program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 2010, 38, e199. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, H. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007, 35, W265–W268. [Google Scholar] [CrossRef]
- Ellinghaus, D.; Kurtz, S.; Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 2008, 9, 18. [Google Scholar] [CrossRef]
- Ou, S.; Jiang, N. LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018, 176, 1410–1422. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Diekhans, M.; Baertsch, R.; Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008, 24, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Keilwagen, J.; Wenk, M.; Erickson, J.L.; Schattat, M.H.; Grau, J.; Hartung, F. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 2016, 44, e89. [Google Scholar] [CrossRef]
- Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008, 9, R7. [Google Scholar] [CrossRef]
- Nawrocki, E.P.; Eddy, S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013, 29, 2933–2935. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Moxon, S.; Marshall, M.; Khanna, A.; Eddy, S.; Bateman, A. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2005, 33, D121–D124. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Stoeckert, C.J.; Roos, D.S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Peterson, D.; Tamura, K. MEGA-CC: Computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 2012, 28, 2685–2686. [Google Scholar] [CrossRef] [PubMed]
- De Bie, T.; Cristianini, N.; Demuth, J.P.; Hahn, M.W. CAFE: A computational tool for the study of gene family evolution. Bioinformatics 2006, 22, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef]
- Fallon, T.R.; Lower, S.E.; Chang, C.-H.; Bessho-Uehara, M.; Martin, G.J.; Bewick, A.J.; Behringer, M.; Debat, H.J.; Wong, I.; Day, J.C. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife 2018, 7, e36495. [Google Scholar] [CrossRef]
- Zhang, R.; He, J.; Dong, Z.; Liu, G.; Yin, Y.; Zhang, X.; Li, Q.; Ren, Y.; Yang, Y.; Liu, W. Genomic and experimental data provide new insights into luciferin biosynthesis and bioluminescence evolution in fireflies. Sci. Rep. 2020, 10, 15882. [Google Scholar] [CrossRef]
- Oba, Y.; Schultz, D.T. Firefly genomes illuminate the evolution of beetle bioluminescent systems. Curr. Opin. Insect Sci. 2022, 50, 100879. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Eyes of two keroplatid Dipterans: The luminescent Arachnocampa luminosa and the non-luminescent Neoditomyia farri plus comments on luminescent and non-luminescent beetles and gastropods. Entomol. Heute 2016, 28, 117–126. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Meyer-Rochow, V.B.; Ballantyne, L.; Zhu, X. An Improved Chromosome-Level Genome Assembly of the Firefly Pyrocoelia pectoralis. Insects 2024, 15, 43. https://doi.org/10.3390/insects15010043
Fu X, Meyer-Rochow VB, Ballantyne L, Zhu X. An Improved Chromosome-Level Genome Assembly of the Firefly Pyrocoelia pectoralis. Insects. 2024; 15(1):43. https://doi.org/10.3390/insects15010043
Chicago/Turabian StyleFu, Xinhua, Victor Benno Meyer-Rochow, Lesley Ballantyne, and Xinlei Zhu. 2024. "An Improved Chromosome-Level Genome Assembly of the Firefly Pyrocoelia pectoralis" Insects 15, no. 1: 43. https://doi.org/10.3390/insects15010043
APA StyleFu, X., Meyer-Rochow, V. B., Ballantyne, L., & Zhu, X. (2024). An Improved Chromosome-Level Genome Assembly of the Firefly Pyrocoelia pectoralis. Insects, 15(1), 43. https://doi.org/10.3390/insects15010043