Insecticidal Activity of Allium sativum Essential Oil-Based Nanoemulsion against Spodoptera littoralis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Plant Rearing
2.2. Development and Characterization of Garlic EO-Based Nano-Formulation
2.3. Laboratory Bioassay on S. littoralis Larvae
2.4. Nontarget Effects on Plants
2.5. Data Analysis
3. Results
3.1. Characterization of Garlic EO Nanoemulsion
3.2. Laboratory Bioassays
3.3. Effects of Garlic EO Nanoemulsion on Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- CABI. Spodoptera Littoralis (Cotton Leafworm); CABI Compendium: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- Baskar, K.; Maheswaran, R.; Ignacimuthu, S. Bioefficacy of Ceasalpinea bonduc (L.) Roxb. against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Arch. Phytopathol. Plant Prot. 2012, 45, 1127–1137. [Google Scholar] [CrossRef]
- Ismail, S. Field Evaluation of Recommended Compounds to Control Some Pests Attacking Cotton and Their Side Effects on Associated Predators. J. Biol. Chem. 2019, 36, 113–121. [Google Scholar]
- Ahmed, W.H.; Atwa, W.A.; Elshaier, M.E.; Abdullah, G.E. Toward Efficient and Safe Control Strategy Against Cotton Leaf Worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) Applying Onion and Pepper Extracts and Their Oils. Al-Azhar Bull. Sci. 2021, 32, 9–15. [Google Scholar] [CrossRef]
- Moustafa, M.A.; Moteleb, R.I.; Ghoneim, Y.F.; Hafez, S.S.; Ali, R.E.; Eweis, E.E.; Hassan, N.N. Monitoring resistance and biochemical studies of three Egyptian field strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to six insecticides. Toxics 2023, 11, 211. [Google Scholar] [CrossRef]
- Aydin, H.; Gurkan, M.O. The Efficacy of Spinosad on Different Strains of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Turk. J. Biol. 2006, 30, 5–9. [Google Scholar]
- Fergani, Y.; EL Sayed, Y.; Refaei, E. Field Evaluation of Organophosphorus Insecticides, Chlorpyrifos and Fungal Bio-Pesticides, Beauveria Bassiana Towards the Sugar Beet Moth Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) and Studying Their Effect on the Population Size of the Associated Arthropod Predators in the Egyptian Sugar Beet Fields. J. Plant Prot. Pathol. 2022, 13, 191–194. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification—A tool for resistance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial Development of Plant Essential Oils and Their Constituents as Active Ingredients in Bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Isman, M.B. Commercialization and Regulation of Botanical Biopesticides. In Development and Commercialization of Biopesticides; Elsevier: New York, NY, USA, 2023; pp. 25–36. [Google Scholar]
- Giunti, G.; Campolo, O.; Laudani, F.; Palmeri, V.; Spinozzi, E.; Bonacucina, G.; Maggi, F.; Pavela, R.; Canale, A.; Andrea, L.; et al. Essential Oil-Based Nanoinsecticides: Ecological Costs and Commercial Potential. In Development and Commercialization of Biopesticides; Elsevier: New York, NY, USA, 2023; pp. 375–402. [Google Scholar]
- Isman, M.; Miresmailli, S. Plant Essential Oils as Repellents and Deterrents to Agricultural Pests. In Recent Developments in Invertebrate Repellents; ACS Publications: Washington, DC, USA, 2011; Volume 1090, pp. 67–79. ISBN 0-8412-2675-X. [Google Scholar]
- Roy, S. Botanical Insecticides; Prospects and Way Forward in India: A Review. J. Entomol. Zool. Stud. 2019, 7, 206–211. [Google Scholar]
- Campolo, O.; Cherif, A.; Ricupero, M.; Siscaro, G.; Grissa-Lebdi, K.; Russo, A.; Cucci, L.M.; Di Pietro, P.; Satriano, C.; Desneux, N.; et al. Citrus Peel Essential Oil Nanoformulations to Control the Tomato Borer, Tuta absoluta: Chemical Properties and Biological Activity. Sci. Rep. 2017, 7, 13036. [Google Scholar] [CrossRef] [PubMed]
- Catani, L.; Manachini, B.; Grassi, E.; Guidi, L.; Semprucci, F. Essential oils as nematicides in plant protection—A review. Plants 2023, 12, 1418. [Google Scholar] [CrossRef] [PubMed]
- Mossa, A.T.H.; Afia, S.I.; Mohafrash, S.M.; Abou-Awad, B.A. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environ. Sci. Pollut. Res. 2018, 25, 10526–10537. [Google Scholar] [CrossRef] [PubMed]
- Sararit, P.; Auamcharoen, W. Biological activities of essential oils from Anethum graveolens L. and Allium sativum L. for controlling Tetranychus truncatus Ehara and Tetranychus urticae Koch. J. Biopest. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.X.; Ho, S.H. Bioactivities of methyl allyl disulfide and diallyl trisulfide from essential oil of garlic to two species of stored-product pests, Sitophilus zeamais (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2000, 93, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Palermo, D.; Giunti, G.; Laudani, F.; Palmeri, V.; Campolo, O. Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum. Sustainability 2021, 13, 9746. [Google Scholar] [CrossRef]
- Cloyd, R.A.; Galle, C.L.; Keith, S.R.; Kalscheur, N.A.; Kemp, K.E. Effect of Commercially Available Plant-Derived Essential Oil Products on Arthropod Pests. J. Econ. Entomol. 2009, 102, 1567–1579. [Google Scholar] [CrossRef] [PubMed]
- Ramzi, S.; Seraji, A.; Azadi Gonbad, R.; Roofigari Haghighat, S. Effects of the Extract and the Essential Oil of Allium sativum on Tea Mealy Bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae). Biocatal. Agric. Biotechnol. 2022, 42, 102359. [Google Scholar] [CrossRef]
- Caccia, S.; Astarita, F.; Barra, E.; Di Lelio, I.; Varricchio, P.; Pennacchio, F. Enhancement of Bacillus thuringiensis Toxicity by Feeding Spodoptera littoralis Larvae with Bacteria Expressing Immune Suppressive DsRNA. J. Pest Sci. 2020, 93, 303–314. [Google Scholar] [CrossRef]
- Modafferi, A.; Ricupero, M.; Mostacchio, G.; Latella, I.; Zappalà, L.; Palmeri, V.; Garzoli, S.; Giunti, G.; Campolo, O. Bioactivity of Allium sativum Essential Oil-Based Nano-Emulsion against Planococcus citri and Its Predator Cryptolaemus montrouzieri. Ind. Crops Prod. 2024, 208, 117837. [Google Scholar] [CrossRef]
- Chaiyana, W.; Inthorn, J.; Somwongin, S.; Anantaworasakul, P.; Sopharadee, S.; Yanpanya, P.; Konaka, M.; Wongwilai, W.; Dhumtanom, P.; Juntrapirom, S.; et al. The Fatty Acid Compositions, Irritation Properties, and Potential Applications of Teleogryllus mitratus Oil in Nanoemulsion Development. Nanomaterials 2024, 14, 184. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Santos, J.; Calero, N.; Alfaro-Rodríguez, M.; Muñoz, J. Strategies for Reducing Ostwald Ripening Phenomenon in Nanoemulsions Based on Thyme Essential Oil. J. Sci. Food Agric. 2020, 100, 1671–1677. [Google Scholar] [CrossRef]
- Ricupero, M.; Biondi, A.; Cincotta, F.; Condurso, C.; Palmeri, V.; Verzera, A.; Zappalà, L.; Campolo, O. Bioactivity and Physico-Chemistry of Garlic Essential Oil Nanoemulsion in Tomato. Entomol. Gen. 2022, 42, 921–930. [Google Scholar] [CrossRef]
- Modafferi, A.; Giunti, G.; Urbaneja, A.; Laudani, F.; Latella, I.; Perex-Hedo, M.; Ricupero, M.; Palmeri, V.; Campolo, O. High-Energy Emulsification of Allium sativum Essential Oil Boosts Insecticidal Activity against Planococcus citri with No Risk to Honeybees. J. Pest Sci. 2024. [Google Scholar] [CrossRef]
- Walia, S.; Mukhia, S.; Bhatt, V.; Kumar, R.; Kumar, R. Variability in Chemical Composition and Antimicrobial Activity of Tagetes minuta L. Essential Oil Collected from Different Locations of Himalaya. Ind. Crops Prod. 2020, 150, 112449. [Google Scholar] [CrossRef]
- Farhadi, N.; Babaei, K.; Farsaraei, S.; Moghaddam, M.; Ghasemi Pirbalouti, A. Changes in Essential Oil Compositions, Total Phenol, Flavonoids and Antioxidant Capacity of Achillea millefolium at Different Growth Stages. Ind. Crops Prod. 2020, 152, 112570. [Google Scholar] [CrossRef]
- Kamanula, J.F.; Belmain, S.R.; Hall, D.R.; Farman, D.I.; Goyder, D.J.; Mvumi, B.M.; Masumbu, F.F.; Stevenson, P.C. Chemical Variation and Insecticidal Activity of Lippia javanica (Burm. f.) Spreng Essential Oil against Sitophilus zeamais Motschulsky. Ind. Crops Prod. 2017, 110, 75–82. [Google Scholar] [CrossRef]
- Ben Abdallah, S.; Riahi, C.; Vacas, S.; Navarro-Llopis, V.; Urbaneja, A.; Pérez-Hedo, M. The Dual Benefit of Plant Essential Oils against Tuta absoluta. Plants 2023, 12, 985. [Google Scholar] [CrossRef]
- Srivastava, R.; Alexander, K.; Lal, E.P. Insecticidal Activities of Some Essential Oils on Subterranean Termites. Int. J. Innov. Sci. Res. Technol. 2021, 6, 290–293. [Google Scholar]
- Yang, F.-L.; Zhu, F.; Lei, C.-L. Garlic Essential Oil and Its Major Component as Fumigants for Controlling Tribolium castaneum (Herbst) in Chambers Filled with Stored Grain. J. Pest Sci. 2010, 83, 311–317. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Martínez, L.C.; Dos Santos, M.H.; Fernandes, F.L.; Wilcken, C.F.; Soares, M.A.; Serrão, J.E.; Zanuncio, J.C. Insecticidal Activity of Garlic Essential Oil and Their Constituents against the Mealworm Beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Sci. Rep. 2017, 7, 46406. [Google Scholar] [CrossRef]
- Abdel-Meguid, A.; Ramadan, M.; Khater, H.; Radwan, I. Louicidal Efficacy of Essential Oils against the Dog Louse, Trichodectes canis (Mallophaga: Trichodectidae). Egypt. Acad. J. Biol. Sci. E Med. Entomol. Parasitol. 2022, 14, 1–16. [Google Scholar] [CrossRef]
- Thomas, C.J.; Callaghan, A. The Use of Garlic (Allium sativa) and Lemon Peel (Citrus limom) Extracts as Culex pipiens Larvacides: Persistence and Interaction with an Organophosphate Resistance Mechanism. Chemosphere 1999, 39, 2489–2496. [Google Scholar] [CrossRef]
- Ali, A.M.; Mohamed, D.S.; Shaurub, E.H.; Elsayed, A.M. Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). J. Entomol. Zool. Stud. 2017, 5, 1476–1482. [Google Scholar]
- Jbilou, R.; Bakrim, A.; Bouayad, N.; Rharrabe, K. Potential Applications of Essential Oils and Their Derivatives for the Control of Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae). J. Plant Dis. Prot. 2023, 130, 707–723. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; El-Sabrout, A.M. Anti-Nutritional, Antifeedant, Growth-Disrupting and Insecticidal Effects of Four Plant Essential Oils on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Crop Prot. 2018, 7, 135–150. [Google Scholar]
Time | LC a 50 (FL) b | LC90 (FL) | χ2 c (df d) | p e |
---|---|---|---|---|
24 h | 1.72 (1.56–1.88) a | 2.79 (2.48–3.31) a | 33.58 (46) | 0.91 |
48 h | 1.57 (1.43–1.70) a | 2.39 (2.15–2.76) a | 41.35 (46) | 0.67 |
72 h | 1.57 (1.43–1.70) a | 2.39 (2.15–2.76) a | 41.35 (46) | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliano, G.; Campolo, O.; Forte, G.; Urbaneja, A.; Pérez-Hedo, M.; Latella, I.; Palmeri, V.; Giunti, G. Insecticidal Activity of Allium sativum Essential Oil-Based Nanoemulsion against Spodoptera littoralis. Insects 2024, 15, 476. https://doi.org/10.3390/insects15070476
Giuliano G, Campolo O, Forte G, Urbaneja A, Pérez-Hedo M, Latella I, Palmeri V, Giunti G. Insecticidal Activity of Allium sativum Essential Oil-Based Nanoemulsion against Spodoptera littoralis. Insects. 2024; 15(7):476. https://doi.org/10.3390/insects15070476
Chicago/Turabian StyleGiuliano, Gaetano, Orlando Campolo, Giuseppe Forte, Alberto Urbaneja, Meritxell Pérez-Hedo, Ilaria Latella, Vincenzo Palmeri, and Giulia Giunti. 2024. "Insecticidal Activity of Allium sativum Essential Oil-Based Nanoemulsion against Spodoptera littoralis" Insects 15, no. 7: 476. https://doi.org/10.3390/insects15070476
APA StyleGiuliano, G., Campolo, O., Forte, G., Urbaneja, A., Pérez-Hedo, M., Latella, I., Palmeri, V., & Giunti, G. (2024). Insecticidal Activity of Allium sativum Essential Oil-Based Nanoemulsion against Spodoptera littoralis. Insects, 15(7), 476. https://doi.org/10.3390/insects15070476