The Effects of Natural Insecticides on the Green Peach Aphid Myzus persicae (Sulzer) and Its Natural Enemies Propylea quatuordecimpunctata (L.) and Aphidius colemani Viereck
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Insecticides
2.3. Chemical Analyses
2.4. Spray Application Assays
2.5. Residue Exposure Assays
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition and Phytotoxic Effects
3.2. Insect Mortality
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Culliney, T.W. Crop Losses to Arthropods. In Integrated Pest Management; Springer: Dordrecht, The Netherlands, 2014; pp. 201–225. [Google Scholar]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent Negative Effects of Pesticides on Biodiversity and Biological Control Potential on European Farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Roush, R.; Tabashnik, B.E. (Eds.) Pesticide Resistance in Arthropods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gentz, M.C.; Murdoch, G.; King, G.F. Tandem Use of Selective Insecticides and Natural Enemies for Effective, Reduced-Risk Pest Management. Biol. Control 2010, 52, 208–215. [Google Scholar] [CrossRef]
- European Parliament Directive (EC). No. 128/2009 of the European Parliament and of the Council Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides; European Parliament Directive (EC): Strasbourg, France, 2009. [Google Scholar]
- Begg, G.S.; Cook, S.M.; Dye, R.; Ferrante, M.; Franck, P.; Lavigne, C.; Lövei, G.L.; Mansion-Vaquie, A.; Pell, J.K.; Petit, S.; et al. A Functional Overview of Conservation Biological Control. Crop Prot. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- van Lenteren, J.C. The State of Commercial Augmentative Biological Control: Plenty of Natural Enemies, but a Frustrating Lack of Uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Barbosa, P. Success in Conservation Biological Control of Arthropods. In Biological Control: Measures of Success; Springer: Dordrecht, The Netherlands, 2000; pp. 105–132. [Google Scholar]
- Beers, E.H.; Mills, N.J.; Shearer, P.W.; Horton, D.R.; Milickzy, E.R.; Amarasekare, K.G.; Gontijo, L.M. Nontarget Effects of Orchard Pesticides on Natural Enemies: Lessons from the Field and Laboratory. Biol. Control 2016, 102, 44–52. [Google Scholar] [CrossRef]
- Cloyd, R.A. Indirect Effects of Pesticides on Natural Enemies. In Pesticides—Advances in Chemical and Botanical Pesticides; InTech: Rijeka, Croatia, 2012; p. 382. [Google Scholar]
- Janssen, A.; van Rijn, P.C.J. Pesticides Do Not Significantly Reduce Arthropod Pest Densities in the Presence of Natural Enemies. Ecol. Lett. 2021, 24, 2010–2024. [Google Scholar] [CrossRef] [PubMed]
- Gross, K.; Rosenheim, J.A. Quantifying Secondary Pest Outbreaks in Cotton and Their Monetary Cost with Causal-Inference Statistics. Ecol. Appl. 2011, 21, 2770–2780. [Google Scholar] [CrossRef]
- Torres, J.B.; Bueno, A. de F. Conservation Biological Control Using Selective Insecticides—A Valuable Tool for IPM. Biol. Control 2018, 126, 53–64. [Google Scholar] [CrossRef]
- Weinzierl, R.; Henn, T. Botanical Insecticides and Insecticidal Soaps. In Handbook of Integrated Pest Management for Turf and Ornamentals; CRC Press: Boca Raton, FL, USA, 2020; pp. 541–555. [Google Scholar]
- Isman, M.B. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Commercial Development of Plant Essential Oils and Their Constituents as Active Ingredients in Bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential Oils in Stored Product Insect Pest Control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef]
- Hall, D.G.; Richardson, M.L. Toxicity of Insecticidal Soaps to the Asian Citrus Psyllid and Two of Its Natural Enemies. J. Appl. Entomol. 2013, 137, 347–354. [Google Scholar] [CrossRef]
- Kim, D.I.; Park, J.D.; Kim, S.G.; Kuk, H.; Jang, M.S.; Kim, S.S. Screening of Some Crude Plant Extracts for Their Acaricidal and Insecticidal Efficacies. J. Asia Pac. Entomol. 2005, 8, 93–100. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of Botanical Insecticides for Sustainable Agriculture: Future Perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Botanical Insecticides: For Richer, for Poorer. Pest Manag. Sci. 2008, 64, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.P.; Oliveira, E.E.; Tschoeke, P.H.; Pinheiro, R.G.; Maia, A.M.S.; Aguiar, R.W.S. Potential Use of Negramina (Siparuna Guianensis Aubl.) Essential Oil to Control Wax Moths and Its Selectivity in Relation to Honey Bees. Ind. Crops Prod. 2017, 109, 151–157. [Google Scholar] [CrossRef]
- Toledo, P.F.S.; Viteri Jumbo, L.O.; Rezende, S.M.; Haddi, K.; Silva, B.A.; Mello, T.S.; Della Lucia, T.M.C.; Aguiar, R.W.S.; Smagghe, G.; Oliveira, E.E. Disentangling the Ecotoxicological Selectivity of Clove Essential Oil against Aphids and Non-Target Ladybeetles. Sci. Total Environ. 2020, 718, 137328. [Google Scholar] [CrossRef]
- Lima, A.P.S.; Santana, E.D.R.; Santos, A.C.C.; Silva, J.E.; Ribeiro, G.T.; Pinheiro, A.M.; Santos, Í.T.B.F.; Blank, A.F.; Araújo, A.P.A.; Bacci, L. Insecticide Activity of Botanical Compounds against Spodoptera Frugiperda and Selectivity to the Predatory Bug Podisus Nigrispinus. Crop Prot. 2020, 136, 105230. [Google Scholar] [CrossRef]
- Campolo, O.; Cherif, A.; Ricupero, M.; Siscaro, G.; Grissa-Lebdi, K.; Russo, A.; Cucci, L.M.; Di Pietro, P.; Satriano, C.; Desneux, N.; et al. Citrus Peel Essential Oil Nanoformulations to Control the Tomato Borer, Tuta Absoluta: Chemical Properties and Biological Activity. Sci. Rep. 2017, 7, 13036. [Google Scholar] [CrossRef] [PubMed]
- Conti, B.; Flamini, G.; Cioni, P.L.; Ceccarini, L.; Macchia, M.; Benelli, G. Mosquitocidal Essential Oils: Are They Safe against Non-Target Aquatic Organisms? Parasitol. Res. 2014, 113, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Desneux, N.; Siscaro, G.; Zappalà, L. Using Organic-Certified Rather than Synthetic Pesticides May Not Be Safer for Biological Control Agents: Selectivity and Side Effects of 14 Pesticides on the Predator Orius Laevigatus. Chemosphere 2012, 87, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Campolo, O.; Puglisi, I.; Barbagallo, R.N.; Cherif, A.; Ricupero, M.; Biondi, A.; Palmeri, V.; Baglieri, A.; Zappalà, L. Side Effects of Two Citrus Essential Oil Formulations on a Generalist Insect Predator, Plant and Soil Enzymatic Activities. Chemosphere 2020, 257, 127252. [Google Scholar] [CrossRef] [PubMed]
- Masetti, A. The Potential Use of Essential Oils against Mosquito Larvae: A Short Review. Bull Insectology 2016, 69, 307–310. [Google Scholar]
- Cloyd, R.A.; Galle, C.L.; Keith, S.R.; Kalscheur, N.A.; Kemp, K.E. Effect of Commercially Available Plant-Derived Essential Oil Products on Arthropod Pests. J. Econ. Entomol. 2009, 102, 1567–1579. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Grieneisen, M.L. Botanical Insecticide Research: Many Publications, Limited Useful Data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Ilboudo, Z.; Dabiré, L.C.B.; Nébié, R.C.H.; Dicko, I.O.; Dugravot, S.; Cortesero, A.M.; Sanon, A. Biological Activity and Persistence of Four Essential Oils towards the Main Pest of Stored Cowpeas, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2010, 46, 124–128. [Google Scholar] [CrossRef]
- Niedobová, J.; Skalský, M.; Fric, Z.F.; Hula, V.; Brtnický, M. Effects of So-Called “Environmentally Friendly” Agrochemicals on the Harlequin Ladybird Harmonia Axyridis (Coleoptera: Coccinelidae). Eur. J. Entomol. 2019, 116, 173–177. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N. Many Shades of Gray—The Context-Dependent Performance of Organic Agriculture. Sci. Adv. 2017, 3, e1602638. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological Control and Integrated Pest Management in Organic and Conventional Systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Costa, C.A.; Guiné, R.P.F.; Costa, D.V.T.A.; Correia, H.E.; Nave, A. Pest Control in Organic Farming. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Organic Farming (Second Edition); Woodhead Publishing: Sawston, UK, 2018; ISBN 9780128132722. [Google Scholar]
- Dedryver, C.-A.; Le Ralec, A.; Fabre, F. The Conflicting Relationships between Aphids and Men: A Review of Aphid Damage and Control Strategies. Comptes Rendus Biol. 2010, 333, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.C.; Peccoud, J. Rapid Evolution of Aphid Pests in Agricultural Environments. Curr. Opin. Insect Sci. 2018, 26, 17–24. [Google Scholar] [CrossRef] [PubMed]
- van Emden, H.F.; Eastop, V.F.; Hughes, R.D.; Way, M.J. The Ecology of Myzus Persicae. Annu. Rev. Entomol. 1969, 14, 197–270. [Google Scholar] [CrossRef]
- Ng, J.C.K.; Perry, K.L. Transmission of Plant Viruses by Aphid Vectors. Mol. Plant Pathol. 2004, 5, 505–511. [Google Scholar] [CrossRef]
- Kalushkov, P.; Hodek, I. The Effects of Six Species of Aphids on Some Life History Parameters of the Ladybird Propylea Quatuordecimpunctata (Coleoptera: Coccinellidae). Eur. J. Entomol. 2005, 102, 449–452. [Google Scholar] [CrossRef]
- Papanikolaou, N.E.; Martinou, A.F.; Kontodimas, D.C.; Matsinos, Y.G.; Milonas, P.G. Functional Responses of Immature Stages of Propylea Quatuordecimpunctata (Coleoptera: Coccinellidae) to Aphis Fabae (Hemiptera: Aphididae). Eur. J. Entomol. 2011, 108, 391–395. [Google Scholar] [CrossRef]
- Benelli, G.; Messing, R.H.; Wright, M.G.; Giunti, G.; Kavallieratos, N.G.; Canale, A. Cues Triggering Mating and Host-Seeking Behavior in the Aphid Parasitoid Aphidius Colemani (Hymenoptera: Braconidae: Aphidiinae): Implications for Biological Control. J. Econ. Entomol. 2014, 107, 2005–2022. [Google Scholar] [CrossRef]
- Prado, S.; Jandricic, S.; Frank, S. Ecological Interactions Affecting the Efficacy of Aphidius Colemani in Greenhouse Crops. Insects 2015, 6, 538–575. [Google Scholar] [CrossRef]
- Lanzoni, A.; Staiano, A.; Masetti, A.; Burgio, G. Evaluation of Lethal and Sublethal Effects of Laminarin on the Green Peach Aphid, Myzus Persicae, under Extended Laboratory Conditions. Entomol. Exp. Appl. 2024, 172, 289–300. [Google Scholar] [CrossRef]
- Jeran, N.; Grdiša, M.; Varga, F.; Šatović, Z.; Liber, Z.; Dabić, D.; Biošić, M. Pyrethrin from Dalmatian Pyrethrum (Tanacetum Cinerariifolium (Trevir.) Sch. Bip.): Biosynthesis, Biological Activity, Methods of Extraction and Determination; Springer: Berlin/Heidelberg, Germany, 2021; Volume 20, ISBN 0123456789. [Google Scholar]
- Tremblay, É.; Bélanger, A.; Brosseau, M.; Boivin, G. Toxicity Effects of an Insecticidal Soap on the Green Peach Aphid [Homoptera: Aphididae]. Phytoprotection 2009, 90, 35–39. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Kite, G.C.; Lewis, G.P.; Forest, F.; Nyirenda, S.P.; Belmain, S.R.; Sileshi, G.W.; Veitch, N.C. Distinct Chemotypes of Tephrosia Vogelii and Implications for Their Use in Pest Control and Soil Enrichment. Phytochemistry 2012, 78, 135–146. [Google Scholar] [CrossRef]
- Tura, M.; Ansorena, D.; Astiasarán, I.; Mandrioli, M.; Toschi, T.G. Evaluation of Hemp Seed Oils Stability under Accelerated Storage Test. Antioxidants 2022, 11, 490. [Google Scholar] [CrossRef]
- Boselli, E.; Velazco, V.; Caboni, M.F.; Lercker, G. Pressurized Liquid Extraction of Lipids for the Determination of Oxysterols in Egg-Containing Food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef]
- Varona, E.; Tres, A.; Rafecas, M.; Vichi, S.; Barroeta, A.C.; Guardiola, F. Methods to Determine the Quality of Acid Oils and Fatty Acid Distillates Used in Animal Feeding. MethodsX 2021, 8, 101334. [Google Scholar] [CrossRef] [PubMed]
- Cardenia, V.; Rodriguez-Estrada, M.T.; Baldacci, E.; Lercker, G. Health-Related Lipids Components of Sardine Muscle as Affected by Photooxidation. Food Chem. Toxicol. 2013, 57, 32–38. [Google Scholar] [CrossRef]
- Henderson, C.F.; Tilton, E.W. Tests with Acaricides against the Brown Wheat Mite. J. Econ. Entomol. 1955, 48, 157–161. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org (accessed on 25 June 2024).
- Lenth, R. Package ‘Emmeans’, version 1.4.4; SCIRP: Wuhan, China, 2018.
- Jerbi-Elayed, M.; Tougeron, K.; Grissa-Lebdi, K.; Hance, T. Effect of Developmental Temperatures on Aphidius Colemani Host-Foraging Behavior at High Temperature. J. Therm. Biol. 2022, 103, 103140. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E. Pyrethrum: The Natural Insecticide; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Pavela, R. Insecticidal Activity of Essential Oils against Cabbage Aphid Brevicoryne Brassicae. J. Essent. Oil-Bear. Plants 2006, 9, 99–106. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential Oils as Active Ingredients of Botanical Insecticides against Aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Hori, M. Antifeeding, Settling Inhibitory and Toxic Activities of Labiate Essential Oils against the Green Peach Aphid, Myzus Persicae (Sulzer) (Homoptera: Aphididae). Appl. Entomol. Zool. 1999, 34, 113–118. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, Y.J.; Lee, C.H.; Chung, N.; Lee, H.S. Insecticidal Toxicities of Carvacrol and Thymol Derived from Thymus Vulgaris Lin. against Pochazia Shantungensis Chou &lu., Newly Recorded Pest. Sci. Rep. 2017, 7, 40902. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Wan, A.J.; Passreiter, C.M. Insecticidal Activity of Essential Oils to the Tobacco Cutworm, Spodoptera Litura. Fitoterapia 2001, 72, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Prowse, G.M.; Galloway, T.S.; Foggo, A. Insecticidal Activity of Garlic Juice in Two Dipteran Pests. Agric. For. Entomol. 2006, 8, 1–6. [Google Scholar] [CrossRef]
- Soares, M.A.; Campos, M.R.; Passos, L.C.; Carvalho, G.A.; Haro, M.M.; Lavoir, A.V.; Biondi, A.; Zappalà, L.; Desneux, N. Botanical Insecticide and Natural Enemies: A Potential Combination for Pest Management against Tuta Absoluta. J. Pest Sci. 2019, 92, 1433–1443. [Google Scholar] [CrossRef]
- Ramdani, C.; Bouharroud, R.; Sbaghi, M.; Mesfioui, A.; El Bouhssini, M. Field and Laboratory Evaluations of Different Botanical Insecticides for the Control of Dactylopius Opuntiae (Cockerell) on Cactus Pear in Morocco. Int. J. Trop. Insect Sci. 2021, 41, 1623–1632. [Google Scholar] [CrossRef]
- Sciortino, M.; Scurria, A.; Lino, C.; Pagliaro, M.; D’Agostino, F.; Tortorici, S.; Ricupero, M.; Biondi, A.; Zappalà, L.; Ciriminna, R. Silica-Microencapsulated Orange Oil for Sustainable Pest Control. Adv. Sustain. Syst. 2021, 5, 2000280. [Google Scholar] [CrossRef]
- López-Meneses, A.K.; Sánchez-Mariñez, R.I.; Quintana-Obregón, E.A.; Parra-Vergara, N.V.; González-Aguilar, G.A.; López-Saiz, C.M.; Cortez-Rocha, M.O. In Vitro Antifungal Activity of Essential Oils and Major Components against Fungi Plant Pathogens. J. Phytopathol. 2017, 165, 232–237. [Google Scholar] [CrossRef]
- Isman, M.B. Plant Essential Oils for Pest and Disease Management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Burgio, G.; Ferrari, R.; Boriani, L.; Pozzati, M.; Van Lenteren, J. The Role of Ecological Infrastructures on Coccinellidae (Coleoptera) and Other Predators in Weedy Field Margins within Northern Italy Agroecosystems. Bull. Insectology. 2006, 59, 59–67. [Google Scholar]
- Nardi, D.; Lami, F.; Pantini, P.; Marini, L. Using Species-Habitat Networks to Inform Agricultural Landscape Management for Spiders. Biol. Conserv. 2019, 239, 108275. [Google Scholar] [CrossRef]
- Kraiss, H.; Cullen, E.M. Efficacy and Nontarget Effects of Reduced-Risk Insecticides on Aphis Glycines (Hemiptera: Aphididae) and Its Biological Control Agent Harmonia Axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 2008, 101, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, N.E.; Kalaitzaki, A.; Karamaouna, F.; Michaelakis, A.; Papadimitriou, V.; Dourtoglou, V.; Papachristos, D.P. Nano-Formulation Enhances Insecticidal Activity of Natural Pyrethrins against Aphis Gossypii (Hemiptera: Aphididae) and Retains Their Harmless Effect to Non-Target Predators. Environ. Sci. Pollut. Res. 2018, 25, 10243–10249. [Google Scholar] [CrossRef] [PubMed]
- Bending, G.D.; Lincoln, S.D. Characterisation of Volatile Sulphur-Containing Compounds Produced during Decomposition of Brassica Juncea Tissues in Soil. Soil Biol. Biochem. 1999, 31, 695–703. [Google Scholar] [CrossRef]
- Zuluaga, D.L.; van Ommen Kloeke, A.E.E.; Verkerk, R.; Röling, W.F.M.; Ellers, J.; Roelofs, D.; Aarts, M.G.M. Biofumigation Using a Wild Brassica Oleracea Accession with High Glucosinolate Content Affects Beneficial Soil Invertebrates. Plant Soil 2015, 394, 155–163. [Google Scholar] [CrossRef]
- Cho, J.R.; Hong, K.J.; Yoo, J.K.; Bang, J.R.; Lee, J.O. Comparative Toxicity of Selected Insecticides to Aphis Citricola, Myzus Malisuctus (Homoptera: Aphididae), and the Predator Harmonia Axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 1997, 90, 11–14. [Google Scholar] [CrossRef]
- Cho, J.R.; Kim, Y.J.; Kim, H.S.; Yoo, J.K. Some Biochemical Evidence on the Selective Insecticide Toxicity between the Two Aphids, Aphis Citricola and Myzus Malisuctus (Homoptera: Phididae), and Their Predator, Harmonia Axyridis (Coleoptera: Coccinellidae). J. Asia Pac. Entomol. 2002, 5, 49–53. [Google Scholar] [CrossRef]
- Acheampong, S.; Stark, J.D. Effects of the Agricultural Adjuvant Sylgard 309 and the Insecticide Pymetrozine on Demographic Parameters of the Aphid Parasitoid, Diaeretiella Rapae. Biol. Control 2004, 31, 133–137. [Google Scholar] [CrossRef]
- Shean, B.; Ranshaw, W.S. Differential Susceptibilities of Green Peach Aphid (Homoptera: Aphididae) and Two Endoparasitoids (Hymenoptera: Encyrtidae and Braconidae) to Pesticides. J. Econ. Entomol. 1991, 84, 844–850. [Google Scholar] [CrossRef]
- De Almeida, L.F.R.; Frei, F.; Mancini, E.; De Martino, L.; De Feo, V. Phytotoxic Activities of Mediterranean Essential Oils. Molecules 2010, 15, 4309–4323. [Google Scholar] [CrossRef] [PubMed]
- Araniti, F.; Miras-Moreno, B.; Lucini, L.; Landi, M.; Abenavoli, M.R. Metabolomic, Proteomic and Physiological Insights into the Potential Mode of Action of Thymol, a Phytotoxic Natural Monoterpenoid Phenol: The Phytotoxic Effect of Thymol on Adult Plants of A. Thaliana. Plant Physiol. Biochem. 2020, 153, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.D.C.; Cavaco, A.M. The Use of Essential Oils for Postharvest Decay Control. A Review. Flavour Fragr. J. 2010, 25, 351–366. [Google Scholar] [CrossRef]
- Ibáñez, M.D.; Blázquez, M.A. Phytotoxic Effects of Commercial Essential Oils on Selected Vegetable Crops: Cucumber and Tomato. Sustain. Chem. Pharm. 2020, 15, 100209. [Google Scholar] [CrossRef]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of Essential Oils: Opportunities and Constraints for the Development of Biopesticides. A Review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef]
- Gabriel, K.R. A Simple Method of Multiple Comparisons of Means. J. Am. Stat. Assoc. 1978, 73, 724. [Google Scholar] [CrossRef]
Commercial Name | Active Ingredient | Tested Concentration (g/L) |
---|---|---|
Prev-Am® Plus | Orange EO (60 g/L) | 5 |
NA (provided by GreenVet srl), | White thyme EO | 2.5 |
Cerrus®, Aglio | Crude garlic extract | 8 |
EcorNaturaSì® | Marseille soap | 5 |
Rabona® | Pyrethrins (50 g/L) | 0.64 |
VOC Classes (Internal Distribution, %) | ||||||||
---|---|---|---|---|---|---|---|---|
Samples | Alkenes | Aldehydes | Ketones | Sulfur Compounds | Terpenes | Alcohols | Acids | Others |
Crude garlic extract (alone) | n.d. | n.d. | n.d. | 67.81 | 10.89 | 3.14 | 15.65 | 2.52 |
Thyme EO | 27.80 | n.d. | n.d. | n.d. | 71.87 | 0.16 | 0.17 | n.d. |
Plant-based solubilizer | 12.71 | 0.99 | 2.69 | n.d. | 1.32 | 0.37 | 81.94 | n.d. |
Thyme EO + Plant-based solubilizer | 27.74 | n.d. | n.d. | n.d. | 71.12 | n.d. | 1.14 | n.d. |
Marseille soap | 76.00 | 12.32 | 2.58 | n.d. | 2.91 | 2.89 | 3.31 | n.d. |
Insects | Dependent Variable | Fixed Effect | d.f. | χ2 | p |
---|---|---|---|---|---|
Model 1 | |||||
Aphids | Mortality at 24 h | Spray treatment | 5 | 647.79 | <0.001 |
Model 2 | |||||
Aphids | Mortality after 24 h | Residue treatment | 5 | 381.95 | <0.001 |
Model 3 | |||||
Adult ladybird beetles | Mortality at 72 h | Spray treatment | 5 | 9.59 | 0.09 |
Model 4 | |||||
Adult ladybird beetles | Mortality after 72 h | Residue treatment | 5 | 32.09 | <0.001 |
Model 5 | |||||
Ladybird larvae | Mortality at 72 h | Spray treatment | 5 | 38.85 | <0.001 |
Model 6 | |||||
Ladybird larvae | Mortality after 72 h | Residue treatment | 5 | 94.23 | <0.001 |
Model 7 | |||||
Parasitoids | Mortality at 10 d | Spray treatment | 5 | 3.81 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lami, F.; Burgio, G.; Magagnoli, S.; Depalo, L.; Lanzoni, A.; Frassineti, E.; Marotti, I.; Alpi, M.; Mercatante, D.; Rodriguez-Estrada, M.T.; et al. The Effects of Natural Insecticides on the Green Peach Aphid Myzus persicae (Sulzer) and Its Natural Enemies Propylea quatuordecimpunctata (L.) and Aphidius colemani Viereck. Insects 2024, 15, 556. https://doi.org/10.3390/insects15070556
Lami F, Burgio G, Magagnoli S, Depalo L, Lanzoni A, Frassineti E, Marotti I, Alpi M, Mercatante D, Rodriguez-Estrada MT, et al. The Effects of Natural Insecticides on the Green Peach Aphid Myzus persicae (Sulzer) and Its Natural Enemies Propylea quatuordecimpunctata (L.) and Aphidius colemani Viereck. Insects. 2024; 15(7):556. https://doi.org/10.3390/insects15070556
Chicago/Turabian StyleLami, Francesco, Giovanni Burgio, Serena Magagnoli, Laura Depalo, Alberto Lanzoni, Elettra Frassineti, Ilaria Marotti, Mattia Alpi, Dario Mercatante, Maria Teresa Rodriguez-Estrada, and et al. 2024. "The Effects of Natural Insecticides on the Green Peach Aphid Myzus persicae (Sulzer) and Its Natural Enemies Propylea quatuordecimpunctata (L.) and Aphidius colemani Viereck" Insects 15, no. 7: 556. https://doi.org/10.3390/insects15070556
APA StyleLami, F., Burgio, G., Magagnoli, S., Depalo, L., Lanzoni, A., Frassineti, E., Marotti, I., Alpi, M., Mercatante, D., Rodriguez-Estrada, M. T., Dinelli, G., & Masetti, A. (2024). The Effects of Natural Insecticides on the Green Peach Aphid Myzus persicae (Sulzer) and Its Natural Enemies Propylea quatuordecimpunctata (L.) and Aphidius colemani Viereck. Insects, 15(7), 556. https://doi.org/10.3390/insects15070556