Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

Insects, Volume 4, Issue 3 (September 2013) – 14 articles , Pages 287-520

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
220 KiB  
Article
Gut Transcription in Helicoverpa zea is Dynamically Altered in Response to Baculovirus Infection
by Jeffrey E. Noland, Jonathan E. Breitenbach, Holly J. R. Popham, Sue M. Hum-Musser, Heiko Vogel and Richard O. Musser
Insects 2013, 4(3), 506-520; https://doi.org/10.3390/insects4030506 - 23 Sep 2013
Cited by 13 | Viewed by 10465
Abstract
The Helicoverpa zea transcriptome was analyzed 24 h after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (p < 0.05 T-test with Benjamini and Hochberg False Discovery Rate) was [...] Read more.
The Helicoverpa zea transcriptome was analyzed 24 h after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (p < 0.05 T-test with Benjamini and Hochberg False Discovery Rate) was detected in the gut epithelial tissue; where 63% of these genes were down-regulated and 37% of genes were up-regulated compared to the mock-infected control. Genes that play important roles in digestive physiology were noted as being generally down-regulated. Among these were aminopeptidases, trypsin-like serine proteases, lipases, esterases and serine proteases. Genes related to the immune response reacted in a complex nature having peptidoglycan binding and viral antigen recognition proteins and antiviral pathway systems down-regulated, whereas antimicrobial peptides and prophenoloxidase were up-regulated. In general, detoxification genes, specifically cytochrome P450 and glutathione S-transferase were down-regulated as a result of infection. This report offers the first comparative transcriptomic study of H. zea compared to HzSNPV infected H. zea and provides further groundwork that will lead to a larger understanding of transcriptional perturbations associated with viral infection and the host response to the viral insult in what is likely the most heavily infected tissue in the insect. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Figure 1

179 KiB  
Article
Microgastrinae (Hymenoptera: Braconidae) in the Forest State of Artikutza (Navarra: Spain): Diversity and Community Structure
by Jesica Pérez-Rodríguez, Teresa Oltra-Moscardó, Francisco Javier Peris-Felipo and Ricardo Jiménez-Peydró
Insects 2013, 4(3), 493-505; https://doi.org/10.3390/insects4030493 - 18 Sep 2013
Cited by 6 | Viewed by 6520
Abstract
Microgastrinae is one of the largest subfamilies of the Braconidae with about 2,000 described species worldwide. These wasps are of enormous ecological interest due to their role in controlling the caterpillar populations. This study analyses diversity and community structure within the Microgastrinae in [...] Read more.
Microgastrinae is one of the largest subfamilies of the Braconidae with about 2,000 described species worldwide. These wasps are of enormous ecological interest due to their role in controlling the caterpillar populations. This study analyses diversity and community structure within the Microgastrinae in the Artikutza Forest, located in the Peñas de Aia Natural Park, western Pyrenees, Spain. The specimens were collected in two different habitats: mixed forest and beech forest. A total of 524 specimens, belonging to nine separate genera and 27 species were captured. Alpha, beta and gamma diversity were analyzed. Additionally, the relationship between Microgastrinae phenology and climatic conditions were studied. Full article
(This article belongs to the Special Issue Insect Conservation and Diversity)
Show Figures

Figure 1

356 KiB  
Review
Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species
by Luca Ruiu
Insects 2013, 4(3), 476-492; https://doi.org/10.3390/insects4030476 - 5 Sep 2013
Cited by 103 | Viewed by 19190
Abstract
Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including [...] Read more.
Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Graphical abstract

868 KiB  
Article
Sperm Cells of a Primitive Strepsipteran
by James B. Nardi, Juan A. Delgado, Francisco Collantes, Lou Ann Miller, Charles M. Bee and Jeyaraney Kathirithamby
Insects 2013, 4(3), 463-475; https://doi.org/10.3390/insects4030463 - 4 Sep 2013
Cited by 15 | Viewed by 8099
Abstract
The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive [...] Read more.
The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera—the order now considered the most closely related to Strepsiptera based on recent genomic evidence. Among the structural features of several strepsipteran families and other insect families that have been surveyed are the organization of testes and ultrastructure of sperm cells. For comparison with existing information on insect sperm structure, this manuscript presents a description of testes and sperm of a representative of the most primitive extant strepsipteran family Mengenillidae, Eoxenos laboulbenei. We compare sperm structure of E. laboulbenei from this family with that of the three other families of Strepsiptera in the other strepsipteran suborder Stylopidia that have been studied as well as with members of the beetle families Meloidae and Rhipiphoridae that share similar life histories with Strepsiptera. Meloids, Rhipiphorids and Strepsipterans all begin larval life as active and viviparous first instar larvae. This study examines global features of these insects’ sperm cells along with specific ultrastructural features of their organelles. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Graphical abstract

510 KiB  
Article
Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen
by Sarah E. Sander, Sonia Altizer, Jacobus C. De Roode and Andrew K. Davis
Insects 2013, 4(3), 447-462; https://doi.org/10.3390/insects4030447 - 28 Aug 2013
Cited by 9 | Viewed by 9789
Abstract
Monarch butterflies (Danaus plexippus) throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE). This protozoan is transmitted when larvae ingest infectious stages (spores) scattered onto host plant leaves by infected adults. Parasites replicate internally during [...] Read more.
Monarch butterflies (Danaus plexippus) throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE). This protozoan is transmitted when larvae ingest infectious stages (spores) scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii). Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation). Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Figure 1

450 KiB  
Review
Occurrence and Prevalence of Insect Pathogens in Populations of the Codling Moth, Cydia pomonella L.: A Long-Term Diagnostic Survey
by Gisbert Zimmermann, Alois M. Huger and Regina G. Kleespies
Insects 2013, 4(3), 425-446; https://doi.org/10.3390/insects4030425 - 2 Aug 2013
Cited by 10 | Viewed by 8526
Abstract
About 20,550 larvae, pupae and adults of the codling moth, Cydia pomonella L., were diagnosed for pathogens during long-term investigations (1955–2012) at the Institute for Biological Control in Darmstadt, Germany. The prevailing entomopathogens diagnosed in these studies were insect pathogenic fungi, especially Beauveria [...] Read more.
About 20,550 larvae, pupae and adults of the codling moth, Cydia pomonella L., were diagnosed for pathogens during long-term investigations (1955–2012) at the Institute for Biological Control in Darmstadt, Germany. The prevailing entomopathogens diagnosed in these studies were insect pathogenic fungi, especially Beauveria bassiana and Isaria farinosa, the microsporidium, Nosema carpocapsae, the Cydia pomonella granulovirus (CpGV), as well as mostly undetermined bacteria. While the CpGV was observed exclusively in larvae and pupae from laboratory colonies or from field experiments with this virus, entomopathogenic fungi were most frequently diagnosed in last instars in autumn and in diapausing larvae and pupae in spring. B. bassiana was identified as the major fungal pathogen, causing larval prevalences of 0.9% to 100% (mean, about 32%). During prognostic long-term studies in larvae and adults of C. pomonella, N. carpocapsae was diagnosed in codling moth populations from various locations in Germany. The mean prevalence generally ranged between 20% and 50%. Experiments revealed that the fecundity and fertility of microsporidia-infected female adults were significantly reduced compared to healthy ones. The results underpin the importance of naturally occurring microbial antagonists and represent a base for further ecological studies on developing new or additional biological and integrated control strategies. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Graphical abstract

194 KiB  
Review
Insects as a Nitrogen Source for Plants
by Scott W. Behie and Michael J. Bidochka
Insects 2013, 4(3), 413-424; https://doi.org/10.3390/insects4030413 - 31 Jul 2013
Cited by 34 | Viewed by 13370
Abstract
Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this [...] Read more.
Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Figure 1

272 KiB  
Article
Influence of Age and Nutritional Status on Flight Performance of the Asian Tiger Mosquito Aedes albopictus (Diptera: Culicidae)
by Christian Kaufmann, Lauren F. Collins and Mark R. Brown
Insects 2013, 4(3), 404-412; https://doi.org/10.3390/insects4030404 - 26 Jul 2013
Cited by 19 | Viewed by 7395
Abstract
The Asian tiger mosquito, Aedes albopictus, is a competent vector for arboviruses and recently was implicated as the vector of the first autochthonous cases of dengue and chikungunya in southern Europe. The objective of this study was to analyze the flight performance [...] Read more.
The Asian tiger mosquito, Aedes albopictus, is a competent vector for arboviruses and recently was implicated as the vector of the first autochthonous cases of dengue and chikungunya in southern Europe. The objective of this study was to analyze the flight performance of female Ae. albopictus of different ages that were starved, sugar-fed, or sugar-fed and blood-fed, using flight mills. After three days of starvation post emergence, females flew an average distance of 0.7 ± 0.5 km in 1.9 ± 1.5 h during a 16 h trial period, whereas sugar- or sugar- and blood-fed females of this age covered a significantly higher distance of around 3 km with a mean total flight time of around 6 h. The age of females (up to four weeks) had no effect on performance. The average of maximal continuous flight segments of sugar-fed (2.14 ± 0.69 h) and blood-fed (3.17 ± 0.82 h) females was distinctly higher than of starved females (0.38 ± 0.15 h) of which most flyers (83%) performed maximal flight segments that lasted no longer than 0.5 h. Overall, the results for the laboratory monitored flight performance of Ae. albopictus confirm their ability to disperse a few kilometres between breeding site and host. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Figure 1

397 KiB  
Article
A Third Way for Entomophthoralean Fungi to Survive the Winter: Slow Disease Transmission between Individuals of the Hibernating Host
by Jørgen Eilenberg, Lene Thomsen and Annette Bruun Jensen
Insects 2013, 4(3), 392-403; https://doi.org/10.3390/insects4030392 - 23 Jul 2013
Cited by 10 | Viewed by 7244
Abstract
In temperate regions, insect pathogenic fungi face the challenge of surviving through the winter. Winter is a time when hosts are immobile, low in number or are present in a stage which is not susceptible to infection. Fungi from Entomophthoromycota have so far [...] Read more.
In temperate regions, insect pathogenic fungi face the challenge of surviving through the winter. Winter is a time when hosts are immobile, low in number or are present in a stage which is not susceptible to infection. Fungi from Entomophthoromycota have so far been known to survive the winter in two ways: either as (1) thick-walled resting spores released into environment from dead hosts, or as (2) structures inside the dead host (e.g., hyphal bodies). Here we report, from the Danish environment, a third way to survive the winter, namely a slow progression and transmission of Entomophthora schizophorae in adult dipteran Pollenia hosts that hibernate in clusters in unheated attics, sheltered areas outdoors (under bark etc.). Fungus-killed sporulating flies were observed outside very early and very late in the season. By sampling adults at the time of their emergence from hibernation in late winter/early spring we documented that the fungus was naturally prevalent and killed flies after a period of incubation. Experimentally we documented that even at the low temperature of 5 °C, the fungus was able to maintain itself in Pollenia cohorts for up to 90 days. From these observations the full winter cycle of this fungus is elucidated. The three types of winter survival are discussed in relation to fungus epidemic development. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Figure 1

413 KiB  
Review
The Non-Photosynthetic Algae Helicosporidium spp.: Emergence of a Novel Group of Insect Pathogens
by Aurélien Tartar
Insects 2013, 4(3), 375-391; https://doi.org/10.3390/insects4030375 - 17 Jul 2013
Cited by 13 | Viewed by 8356
Abstract
Since the original description of Helicosporidium parasiticum in 1921, members of the genus Helicosporidium have been reported to infect a wide variety of invertebrates, but their characterization has remained dependent on occasional reports of infection. Recently, several new Helicosporidium isolates have been successfully [...] Read more.
Since the original description of Helicosporidium parasiticum in 1921, members of the genus Helicosporidium have been reported to infect a wide variety of invertebrates, but their characterization has remained dependent on occasional reports of infection. Recently, several new Helicosporidium isolates have been successfully maintained in axenic cultures. The ability to produce large quantity of biological material has led to very significant advances in the understanding of Helicosporidium biology and its interactions with insect hosts. In particular, the unique infectious process has been well documented; the highly characteristic cyst and its included filamentous cell have been shown to play a central role during host infection and have been the focus of detailed morphological and developmental studies. In addition, phylogenetic analyses inferred from a multitude of molecular sequences have demonstrated that Helicosporidium are highly specialized non-photosynthetic algae (Chlorophyta: Trebouxiophyceae), and represent the first described entomopathogenic algae. This review provides an overview of (i) the morphology of Helicosporidium cell types, (ii) the Helicosporidium life cycle, including the entire infectious sequence and its impact on insect hosts, (iii) the phylogenetic analyses that have prompted the taxonomic classification of Helicosporidium as green algae, and (iv) the documented host range for this novel group of entomopathogens. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Graphical abstract

381 KiB  
Review
Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle
by Almudena Ortiz-Urquiza and Nemat O. Keyhani
Insects 2013, 4(3), 357-374; https://doi.org/10.3390/insects4030357 - 16 Jul 2013
Cited by 509 | Viewed by 27642
Abstract
Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to [...] Read more.
Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is “passaged” through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the “action on the surface” may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms underlying this interaction can shed light on the ecology and evolution of virulence and can be used for rational design strategies at increasing the effectiveness of entomopathogenic fungi for pest control in field applications. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Figure 1

1409 KiB  
Review
Hirsutellin A: A Paradigmatic Example of the Insecticidal Function of Fungal Ribotoxins
by Elías Herrero-Galán, Lucía García-Ortega, Miriam Olombrada, Javier Lacadena, Álvaro Martínez Del Pozo, José G. Gavilanes and Mercedes Oñaderra
Insects 2013, 4(3), 339-356; https://doi.org/10.3390/insects4030339 - 9 Jul 2013
Cited by 23 | Viewed by 7735
Abstract
The fungal pathogen Hirsutella thompsonii produces an insecticidal protein named hirsutellin A (HtA), which has been described to be toxic to several species of mites, insect larvae, and cells. On the other hand, on the basis of an extensive biochemical and structural characterization, [...] Read more.
The fungal pathogen Hirsutella thompsonii produces an insecticidal protein named hirsutellin A (HtA), which has been described to be toxic to several species of mites, insect larvae, and cells. On the other hand, on the basis of an extensive biochemical and structural characterization, HtA has been considered to be a member of the ribotoxins family. Ribotoxins are fungal extracellular ribonucleases, which inactivate ribosomes by specifically cleaving a single phosphodiester bond located at the large rRNA. Although ribotoxins were brought to light in the 1960s as antitumor agents, their biological function has remained elusive. Thus, the consideration of hirsutellin A, an insecticidal protein, as a singular ribotoxin recalled the idea of the biological activity of these toxins as insecticidal agents. Further studies have demonstrated that the most representative member of the ribotoxin family, α-sarcin, also shows strong toxic action against insect cells. The determination of high resolution structures, the characterization of a large number of mutants, and the toxicity assays against different cell lines have been the tools used for the study of the mechanism of action of ribotoxins at the molecular level. The aim of this review is to serve as a compilation of the facts that allow identification of HtA as a paradigmatic example of the insecticidal function of fungal ribotoxins. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Graphical abstract

238 KiB  
Review
Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera
by Ángel M. Casanova-Torres and Heidi Goodrich-Blair
Insects 2013, 4(3), 320-338; https://doi.org/10.3390/insects4030320 - 2 Jul 2013
Cited by 37 | Viewed by 10076
Abstract
Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of [...] Read more.
Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP) expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Figure 1

717 KiB  
Review
Virology, Epidemiology and Pathology of Glossina Hytrosavirus, and Its Control Prospects in Laboratory Colonies of the Tsetse Fly, Glossina pallidipes (Diptera; Glossinidae)
by Henry M. Kariithi, Monique M. Van Oers, Just M. Vlak, Marc J. B. Vreysen, Andrew G. Parker and Adly M. M. Abd-Alla
Insects 2013, 4(3), 287-319; https://doi.org/10.3390/insects4030287 - 2 Jul 2013
Cited by 22 | Viewed by 12417
Abstract
The Glossina hytrosavirus (family Hytrosaviridae) is a double-stranded DNA virus with rod-shaped, enveloped virions. Its 190 kbp genome encodes 160 putative open reading frames. The virus replicates in the nucleus, and acquires a fragile envelope in the cell cytoplasm. Glossina hytrosavirus was [...] Read more.
The Glossina hytrosavirus (family Hytrosaviridae) is a double-stranded DNA virus with rod-shaped, enveloped virions. Its 190 kbp genome encodes 160 putative open reading frames. The virus replicates in the nucleus, and acquires a fragile envelope in the cell cytoplasm. Glossina hytrosavirus was first isolated from hypertrophied salivary glands of the tsetse fly, Glossina pallidipes Austen (Diptera; Glossinidae) collected in Kenya in 1986. A certain proportion of laboratory G. pallidipes flies infected by Glossina hytrosavirus develop hypertrophied salivary glands and midgut epithelial cells, gonadal anomalies and distorted sex-ratios associated with reduced insemination rates, fecundity and lifespan. These symptoms are rare in wild tsetse populations. In East Africa, G. pallidipes is one of the most important vectors of African trypanosomosis, a debilitating zoonotic disease that afflicts 37 sub-Saharan African countries. There is a large arsenal of control tactics available to manage tsetse flies and the disease they transmit. The sterile insect technique (SIT) is a robust control tactic that has shown to be effective in eradicating tsetse populations when integrated with other control tactics in an area-wide integrated approach. The SIT requires production of sterile male flies in large production facilities. To supply sufficient numbers of sterile males for the SIT component against G. pallidipes, strategies have to be developed that enable the management of the Glossina hytrosavirus in the colonies. This review provides a historic chronology of the emergence and biogeography of Glossina hytrosavirus, and includes researches on the infectomics (defined here as the functional and structural genomics and proteomics) and pathobiology of the virus. Standard operation procedures for viral management in tsetse mass-rearing facilities are proposed and a future outlook is sketched. Full article
(This article belongs to the Special Issue Insect Pathology)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop