Combined Eccentric-Isokinetic and Isoinertial Training Leads to Large Ring-Specific Strength Gains in Elite Gymnasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. Maximum Strength and Strength Endurance Tests on Rings
2.4. Eccentric Training
2.5. Statistical Analyses
3. Results
3.1. Maximum Strength
3.2. Strength Endurance
4. Discussion
4.1. Maximum Strength
4.2. Strength Endurance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FIG. Code of Points MAG (2022–2024); FIG: Lausanne, Switzerland, 2022. [Google Scholar]
- Schärer, C.; Tacchelli, L.; Gopfert, B.; Gross, M.; Luthy, F.; Taube, W.; Hübner, K. Specific Eccentric-Isokinetic Cluster Training Improves Static Strength Elements on Rings for Elite Gymnasts. Int. J. Environ. Res. Public Health 2019, 16, 4571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübner, K.; Schärer, C. Relationship between Swallow, Support Scale and Iron Cross on rings and their specific preconditioning strengthening exercises. Sci. Gymnast. J. 2015, 7, 59–68. [Google Scholar]
- Gorosito, M.A. Relative strength requirement for Swallow element proper execution: A predictive test. Sci. Gymnast. J. 2013, 5, 59–67. [Google Scholar]
- Vogt, M.; Hoppeler, H.H. Eccentric exercise: Mechanisms and effects when used as training regime or training adjunct. J. Appl. Physiol. 2014, 116, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Kjaer, M.; Heinemeier, K.M. Eccentric exercise: Acute and chronic effects on healthy and diseased tendons. J. Appl. Physiol. 2014, 116, 1435–1438. [Google Scholar] [CrossRef] [Green Version]
- Hody, S.; Croisier, J.L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef]
- Hollander, D.B.; Kraemer, R.R.; Kilpatrick, M.W.; Ramadan, Z.G.; Reeves, G.V.; Francois, M.; Hebert, E.P.; Tryniecki, J.L. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J. Strength Cond. Res. 2007, 21, 34–40. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med. 2017, 47, 663–675. [Google Scholar] [CrossRef]
- Cowell, J.F.; Cronin, J.; Brughelli, M. Eccentric Muscle Actions and How the Strength and Conditioning Specialist Might Use Them for a Variety of Purposes. Strength Cond. J. 2012, 34, 33–48. [Google Scholar] [CrossRef]
- Higbie, E.J.; Cureton, K.J.; Warren, G.L., 3rd; Prior, B.M. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J. Appl. Physiol. 1996, 81, 2173–2181. [Google Scholar] [CrossRef] [Green Version]
- Guilhem, G.; Cornu, C.; Guevel, A. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise. Ann. Phys. Rehabil. Med. 2010, 53, 319–341. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Sinclair, P.J.; Naito, H. Strategies for maximizing power and strength gains in isoinertial resistance training: Implications for competitive athletes. J. Phys. Fit. Sports Med. 2016, 5, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Haff, G.G.; Hobbs, R.; Sands, W.A.; Pierce, K.; Stone, M.H. Cluster Training: A Novel Method for Introducing Training Program Variation. Strength Cond. J. 2008, 30, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Hortobagyi, T.; Hill, J.P.; Houmard, J.A.; Fraser, D.D.; Lambert, N.J.; Israel, R.G. Adaptive responses to muscle lengthening and shortening in humans. J. Appl. Physiol. 1996, 80, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Shepstone, T.N.; Tang, J.E.; Dallaire, S.; Schuenke, M.D.; Staron, R.S.; Phillips, S.M. Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J. Appl. Physiol. 2005, 98, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Vaara, J.P.; Kyrolainen, H.; Niemi, J.; Ohrankammen, O.; Hakkinen, A.; Kocay, S.; Hakkinen, K. Associations of maximal strength and muscular endurance test scores with cardiorespiratory fitness and body composition. J. Strength Cond. Res. 2012, 26, 2078–2086. [Google Scholar] [CrossRef]
- Johnson, D.; Lynch, J.; Nash, K.; Cygan, J.; Mayhew, J.L. Relationship of lat-pull repetitions and pull-ups to maximal lat-pull and pull-up strength in men and women. J. Strength Cond. Res. 2009, 23, 1022–1028. [Google Scholar] [CrossRef]
- Schärer, C.; Huber, S.; Bucher, P.; Capelli, C.; Hübner, K. Maximum Strength Benchmarks for Difficult Static Elements on Rings in Male Elite Gymnastics. Sports 2021, 9, 78. [Google Scholar] [CrossRef]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Latash, M.L. Effects of muscle fatigue on multi-muscle synergies. Exp. Brain Res. 2011, 214, 335–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Week | Training | Sets/Clusters/Reps (Rest: 5 min/20 s/None) | Time under Tension per Training | Exercise Modality |
---|---|---|---|---|
1 | 1 | 2/4/4 | ~2 min 40 s | Ecc-isokin. |
2 | 3/3/4 | ~3 min | Ecc-isokin. | |
2 | 3 | 3/3/4 | ~3 min | Ecc-isokin. |
4 | 2/4/4 | ~2 min 40 s | Ecc-isokin + additional load | |
3 | 5 | 3/3/4 | ~3 min | Ecc-isokin + additional load |
6 | 3/3/4 | ~3 min | Ecc-isokin + additional load |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schärer, C.; Bucher, P.; Lüthy, F.; Hübner, K. Combined Eccentric-Isokinetic and Isoinertial Training Leads to Large Ring-Specific Strength Gains in Elite Gymnasts. Sports 2022, 10, 49. https://doi.org/10.3390/sports10040049
Schärer C, Bucher P, Lüthy F, Hübner K. Combined Eccentric-Isokinetic and Isoinertial Training Leads to Large Ring-Specific Strength Gains in Elite Gymnasts. Sports. 2022; 10(4):49. https://doi.org/10.3390/sports10040049
Chicago/Turabian StyleSchärer, Christoph, Pascal Bucher, Fabian Lüthy, and Klaus Hübner. 2022. "Combined Eccentric-Isokinetic and Isoinertial Training Leads to Large Ring-Specific Strength Gains in Elite Gymnasts" Sports 10, no. 4: 49. https://doi.org/10.3390/sports10040049
APA StyleSchärer, C., Bucher, P., Lüthy, F., & Hübner, K. (2022). Combined Eccentric-Isokinetic and Isoinertial Training Leads to Large Ring-Specific Strength Gains in Elite Gymnasts. Sports, 10(4), 49. https://doi.org/10.3390/sports10040049