Comparison between Dry-Land and Swimming Priming on 50 m Crawl Performance in Well-Trained Adolescent Swimmers
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedures
2.3. Training Intervention
2.4. 50 m Crawl Time Measurement
2.5. Body Composition Analysis
2.6. Countermovement Jump
2.7. Lower Body Isometric Peak Torque and Rate of Torque Development
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, P.W.; James, L.P.; McGuigan, M.R.; Jenkins, D.G.; Kelly, V.G. Resistance priming to enhance neuromuscular performance in sport: Evidence, potential mechanisms and directions for future research. Sports Med. 2019, 49, 1499–1514. [Google Scholar] [CrossRef] [PubMed]
- Yule, S. Maintaining an in Season Conditioning Edge. In High Performance Training for Sports; Joyce, D., Lewindon, D., Eds.; Human Kinetics: Leeds, UK, 2014; pp. 301–331. [Google Scholar]
- Cook, C.J.; Kilduff, L.P.; Crewther, B.T.; Beaven, M.; West, D.J. Morning based strength training improves afternoon physical performance in rugby union players. J. Sci. Med. Sport 2014, 17, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Donghi, F.; Rampinini, E.; Bosio, A.; Fanchini, M.; Carlomagno, D.; Maffiuletti, N.A. Morning Priming Exercise Strategy to Enhance Afternoon Performance in Young Elite Soccer Players. Int. J. Sports Physiol. Perform. 2021, 16, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; King, A.; Bracken, R.M.; Cook, C.J.; Giroud, T.; Kilduff, L.P. A comparison of different modes of morning priming exercise on afternoon performance. Int. J. Sports Physiol. Perform. 2016, 11, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Veligekas, P.; Brown, L.E.; Terzis, G.; Bogdanis, G.C. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J. Strength Cond. Res. 2018, 32, 643–650. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Raglin, J.S.; Rattray, B. Morning exercise: Enhancement of afternoon sprint-swimming performance. Int. J. Sports Physiol. Perform. 2017, 12, 605–611. [Google Scholar] [CrossRef]
- West, D.J.; Dietzig, B.M.; Bracken, R.M.; Cunningham, D.J.; Crewther, B.T.; Cook, C.J.; Kilduff, L.P. Influence of post-warm-up recovery time on swim performance in international swimmers. J. Sci. Med. Sport 2013, 16, 172–176. [Google Scholar] [CrossRef]
- Kilduff, L.P.; Finn, C.V.; Baker, J.S.; Cook, C.J.; West, D.J. Preconditioning strategies to enhance physical performance on the day of competition. Int. J. Sports Physiol. Perform. 2013, 8, 677–681. [Google Scholar] [CrossRef]
- Sale, D.G. Postactivation potentiation: Role in human performance. Exerc. Sport Sci. Rev. 2002, 30, 138–143. [Google Scholar] [CrossRef]
- Bojsen-Møller, J.; Magnusson, S.P.; Rasmussen, L.R.; Kjaer, M.; Aagaard, P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J. Appl. Physiol. 2005, 99, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Crowley, E.; Harrison, A.J.; Lyons, M. The impact of resistance training on swimming performance: A systematic review. Sports Med. 2017, 47, 2285–2307. [Google Scholar] [CrossRef]
- Girold, S.; Jalab, C.; Bernard, O.; Carette, P.; Kemoun, G.; Dugué, B. Dry-land strength training vs. electrical stimulation in sprint swimming performance. J. Strength Cond. Res. 2012, 26, 497–505. [Google Scholar] [CrossRef]
- Amaro, N.M.; Morouco, P.G.; Marques, M.C.; Batalha, N.; Neiva, H.; Marinho, D.A. A systematic review on dry-land strength and conditioning training on swimming performance. Sci. Sports 2019, 34, e1–e14. [Google Scholar] [CrossRef] [Green Version]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of resistance training movement pattern and velocity on isometric muscular rate of force development: A systematic review with meta-analysis and meta-regression. Sports Med. 2020, 50, 943–963. [Google Scholar] [CrossRef]
- Harrison, P.W.; James, L.P.; McGuigan, M.R.; Jenkins, D.G.; Kelly, V.G. Prevalence and application of priming exercise in high performance sport. J. Sci. Med. Sport 2020, 23, 297–303. [Google Scholar] [CrossRef]
- Williams, N.; Russell, M.; Cook, C.J.; Kilduff, L.P. Effect of Ischemic Preconditioning on Maximal Swimming Performance. J. Strength Cond. Res. 2021, 35, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Cree, J.; Read, P.; Chavda, S.; Edwards, M.; Turner, A. Strength and conditioning for sprint swimming. Strength Cond. J. 2013, 35, 1–6. [Google Scholar] [CrossRef]
- Loturco, I.; Barbosa, A.C.; Nocentini, R.K.; Pereira, L.A.; Kobal, R.; Kitamura, K.; Abad, C.C.C.; Figueiredo, P.; Nakamura, F.Y. A correlational analysis of tethered swimming, swim sprint performance and dry-land power assessments. Int. J. Sports Med. 2016, 37, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Morouco, P.G.; Marinho, D.A.; Amaro, N.M.; Pérez-Turpin, J.A.; Marques, M.C. Effects of dry-land strength training on swimming performance: A brief review. J. Hum. Sport Exerc. 2012, 7, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Stager, J.M.; Cordain, L.; Becker, T.J. Relationship of body composition to swimming performance in female swimmers. J. Swim. Res. 1984, 1, 21–26. [Google Scholar]
- Klika, R.J.; Thorland, W.G. Physiological determinants of sprint swimming performance in children and young adults. Pediatr. Exerc. Sci. 1994, 6, 59–68. [Google Scholar] [CrossRef]
- Garrido, N.; Marinho, D.A.; Barbosa, T.M.; Costa, A.M.; Silva, A.J.; Pérez-Turpin, J.A.; Marques, M.C. Relationships between dry land strength, power variables and short sprint performance in young competitive swimmers. J. Hum. Sport Exerc. 2010, 5, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Marques, M.C.; Yáñez-García, J.M.; Marinho, D.A.; González-Badillo, J.J.; Rodríguez-Rosell, D. In-Season Strength Training in Elite Junior Swimmers: The Role of the Low-Volume, High-Velocity Training on Swimming Performance. J. Hum. Kinet. 2020, 74, 71–84. [Google Scholar] [CrossRef]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and power predictors of swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef]
- Aktuz, Z.B.; Vuraz, Ş.N.; Serkan, İ.B.İ.Ş. The effect of theraband exercises on motor performance and swimming degree of young swimmers. Turk. J. Sports Med. 2019, 21, 238–243. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Torres-Luque, G.; Lara-Sánchez, A.J.; Garatachea, N.; Nikolaidis, P.T. Body composition using bioelectrical impedance analysis in elite young soccer players: The effects of age and playing position. Sport Sci. Health 2015, 11, 203–210. [Google Scholar] [CrossRef]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.N.; Rosenstein, M.T. Cross-validation of three jump power equations. Med. Sci. Sports Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef]
- Elias, L.J.; Bryden, M.P.; Bulman-Fleming, M.B. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 1998, 36, 37–43. [Google Scholar] [CrossRef]
- Ioannides, C.; Apostolidis, A.; Hadjicharalambous, M.; Zaras, N. Effect of a 6-week plyometric training on power, muscle strength, and rate of force development in young competitive karate athletes. J. Phys. Educ. Sport 2020, 20, 1740–1746. [Google Scholar] [CrossRef]
- Zaras, N.; Stasinaki, A.; Spiliopoulou, P.; Mpampoulis, T.; Hadjicharalambous, M.; Terzis, G. Effect of inter-repetition rest vs. traditional strength training on lower body strength, rate of force development, and muscle architecture. Appl. Sci. 2021, 11, 45. [Google Scholar] [CrossRef]
- Keiner, M.; Wirth, K.; Fuhrmann, S.; Kunz, M.; Hartmann, H.; Haff, G.G. The influence of upper-and lower-body maximum strength on swim block start, turn, and overall swim performance in sprint swimming. J. Strength Cond. Res. 2021, 35, 2839–2845. [Google Scholar] [CrossRef]
- Methenitis, S.; Spengos, K.; Zaras, N.; Stasinaki, A.N.; Papadimas, G.; Karampatsos, G.; Arnaoutis, G.; Terzis, G. Fiber type composition and rate of force development in endurance-and resistance-trained individuals. J. Strength Cond. Res. 2019, 33, 2388–2397. [Google Scholar] [CrossRef]
- Zaras, N.D.; Stasinaki, A.N.E.; Methenitis, S.K.; Krase, A.A.; Karampatsos, G.P.; Georgiadis, G.V.; Spengos, K.M.; Terzis, G.D. Rate of force development, muscle architecture, and performance in young competitive track and field throwers. J. Strength Cond. Res. 2016, 30, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Zaras, N.; Stasinaki, A.N.; Spiliopoulou, P.; Arnaoutis, G.; Hadjicharalambous, M.; Terzis, G. Rate of force development, muscle architecture, and performance in elite weightlifters. Int. J. Sports Physiol. Perform. 2020, 16, 216–223. [Google Scholar] [CrossRef]
Dry Land Priming |
| Rest between sets 2 min. Rest between repetitions for slam balls and CMJs 3 s. All repetitions performed with maximum voluntary velocity of movement. |
Swimming Priming |
| All swimming sprints performed with maximum voluntary velocity of swim. Ratio between sprint and rest was 1:4. |
Control | Dry-Land Priming | Swimming Priming | |
---|---|---|---|
Body mass (kg) | 62.4 ± 8.1 | 62.6 ± 8.2 | 62.5 ±8.0 |
50 m crawl time performance (s) | 30.02 ± 2.73 | 29.24 ± 2.46 * | 29.22 ± 2.48 * |
CMJ height (cm) | 32.3 ± 5.2 | 32.5 ± 5.4 | 32.3 ± 5.3 |
CMJ power (W) | 2719.5 ± 537.7 | 2724.9 ± 576.7 | 2737.7 ± 526.1 |
CMJ (W/kg) | 43.3 ± 4.7 | 43.5 ± 4.9 | 43.4 ± 4.7 |
Body fat (%) | 17.4 ± 5.6 | ||
Total lean mass (kg) | 51.5 ± 6.8 | ||
Trunk lean mass (kg) | 26.9 ± 3.2 | ||
Legs lean mass (kg) | 16.9 ± 2.5 | ||
Arms lean mass (kg) | 5.0 ± 1.1 | ||
IPT (Nm) | 213.0 ± 46.5 | ||
RTD20msec (Nm·s−1) | 1419.2 ± 352.7 | ||
RTD40msec (Nm·s−1) | 1245.0 ± 270.1 | ||
RTD60msec (Nm·s−1) | 1185.5 ± 295.0 | ||
RTD80msec (Nm·s−1) | 1155.9 ± 272.0 | ||
RTD100msec (Nm·s−1) | 1130.8 ± 246.9 | ||
RTD120msec (Nm·s−1) | 1080.9 ± 217.2 | ||
RTD150msec (Nm·s−1) | 1000.5 ± 196.2 | ||
RTD200msec (Nm·s−1) | 873.4 ± 166.3 | ||
RTD250msec (Nm·s−1) | 746.4 ± 140.9 | ||
RTD300msec (Nm·s−1) | 632.0 ± 121.6 |
Body Fat | Total Lean Mass | Trunk Lean Mass | Legs Lean Mass | Arms Lean Mass | |
---|---|---|---|---|---|
C | −0.285 | −0.744 ** | −0.748 ** | −0.710 * | −0.721 * |
DLP | −0.340 | −0.785 ** | −0.791 ** | −0.758 ** | −0.743 ** |
SP | −0.263 | −0.739 ** | −0.727 * | −0.740 ** | −0.718 * |
IPT | RTD | RTD | RTD | RTD | RTD | RTD | RTD | RTD | RTD | RTD | |
---|---|---|---|---|---|---|---|---|---|---|---|
20 ms | 40 ms | 60 ms | 80 ms | 100 ms | 120 ms | 150 ms | 200 ms | 250 ms | 300 ms | ||
C | −0.774 ** | −0.370 | −0.617 * | −0.596 | −0.663 * | −0.647 * | −0.681 * | −0.767 ** | −0.821 ** | −0.793 ** | −0.697 * |
DLP | −0.746 ** | −0.384 | −0.625 * | −0.611 * | −0.689 * | −0.710 * | −0.731 * | −0.765 ** | −0.812 ** | −0.763 ** | −0.683 * |
SP | −0.813 ** | −0.333 | −0.555 | −0.549 | −0.611 * | −0.589 | −0.625 * | −0.723 * | −0.811 ** | −0.834 ** | −0.771 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaras, N.; Apostolidis, A.; Kavvoura, A.; Hadjicharalambous, M. Comparison between Dry-Land and Swimming Priming on 50 m Crawl Performance in Well-Trained Adolescent Swimmers. Sports 2022, 10, 52. https://doi.org/10.3390/sports10040052
Zaras N, Apostolidis A, Kavvoura A, Hadjicharalambous M. Comparison between Dry-Land and Swimming Priming on 50 m Crawl Performance in Well-Trained Adolescent Swimmers. Sports. 2022; 10(4):52. https://doi.org/10.3390/sports10040052
Chicago/Turabian StyleZaras, Nikolaos, Andreas Apostolidis, Angeliki Kavvoura, and Marios Hadjicharalambous. 2022. "Comparison between Dry-Land and Swimming Priming on 50 m Crawl Performance in Well-Trained Adolescent Swimmers" Sports 10, no. 4: 52. https://doi.org/10.3390/sports10040052
APA StyleZaras, N., Apostolidis, A., Kavvoura, A., & Hadjicharalambous, M. (2022). Comparison between Dry-Land and Swimming Priming on 50 m Crawl Performance in Well-Trained Adolescent Swimmers. Sports, 10(4), 52. https://doi.org/10.3390/sports10040052