Effect of Two Different Training Interventions on Cycling Performance in Mountain Bike Cross-Country Olympic Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Laboratory Performance Test
2.2.2. XCO Race
2.2.3. Training Intervention
- Polarized training (POL)
- Low-intensity training (LIT)
2.3. Statistical Analyses
3. Results
3.1. Subjects
3.2. MTB-PT and XCO Race
4. Discussion
4.1. MTB-PT and XCO Race
4.2. Intervention-Training Program
4.3. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baron, R. Aerobic and anaerobic power characteristics of off-road cyclists. Med. Sci. Sports Exerc. 2001, 33, 1387–1393. [Google Scholar]
- Impellizzeri, F.M.; Marcora, S.M. The physiology of mountain biking. Sports Med. 2007, 37, 59–71. [Google Scholar] [CrossRef]
- Inoue, A.; Sa Filho, A.S.; Mello, F.C.; Santos, T.M. Relationship between anaerobic cycling tests and mountain bike cross-country performance. J. Strength Cond. Res. 2012, 26, 1589–1593. [Google Scholar] [CrossRef]
- Stapelfeldt, B.; Schwirtz, A.; Schumacher, Y.O.; Hillebrecht, M. Workload demands in mountain bike racing. Int. J. Sports Med. 2004, 25, 294–300. [Google Scholar] [CrossRef]
- Union Cycliste Internationale. UCI Cycling Regulations; Part 4; Mountain Bike; Version on 10.06.2021; Union Cycliste Internationale: Aigle, Switzerland, 2021; pp. 1–91. [Google Scholar]
- Van Loon, L.J.; Greenhaff, P.L.; Constantin-Teodosiu, D.; Saris, W.H.; Wagenmakers, A.J. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 2001, 536, 295–304. [Google Scholar]
- Coffey, V.G.; Hawley, J.A. The molecular bases of training adaptation. Sports Med. 2007, 37, 737–763. [Google Scholar] [CrossRef]
- Laursen, P.B. Training for intense exercise performance: High-intensity or high-volume training? Scand. J. Med. Sci. Sports 2010, 20 (Suppl. 2), 1–10. [Google Scholar] [CrossRef]
- Stöggl, T.L.; Sperlich, B. The training intensity distribution among well-trained and elite endurance athletes. Front. Physiol. 2015, 6, 295. [Google Scholar] [CrossRef] [Green Version]
- Stöggl, T.L.; Bjorklund, G. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training. Front. Physiol. 2017, 8, 562. [Google Scholar] [CrossRef] [Green Version]
- Selles-Perez, S.; Fernández-Sáez, J.; Cejuela, R. Polarized and Pyramidal Training Intensity Distribution: Relationship with a Half-Ironman Distance Triathlon Competition. J. Sports Sci. Med. 2019, 18, 708–715. [Google Scholar]
- Seiler, K.S.; Kjerland, G.O. Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an “optimal” distribution? Scand. J. Med. Sci. Sports 2006, 16, 49–56. [Google Scholar] [CrossRef]
- Esteve-Lanao, J.; San Juan, A.F.; Earnest, C.P.; Foster, C.; Lucia, A. How do endurance runners actually train? Relationship with competition performance. Med. Sci. Sports Exerc. 2005, 37, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Fiskerstrand, A.; Seiler, K.S. Training and performance characteristics among Norwegian international rowers 1970-2001. Scand. J. Med. Sci. Sports 2004, 14, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Ingham, S.A.; Carter, H.; Whyte, G.P.; Doust, J.H. Physiological and performance effects of low- versus mixed-intensity rowing training. Med. Sci. Sports Exerc. 2008, 40, 579–584. [Google Scholar] [CrossRef]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef]
- Billat, V.L.; Flechet, B.; Petit, B.; Muriaux, G.; Koralsztein, J.P. Interval training at VO2max: Effects on aerobic performance and overtraining markers. Med. Sci. Sports Exerc. 1999, 31, 156–163. [Google Scholar] [CrossRef]
- Hawley, J.A.; Stepto, N.K. Adaptations to training in endurance cyclists: Implications for performance. Sports Med. 2001, 31, 511–520. [Google Scholar] [CrossRef]
- Seiler, S.; Haugen, O.; Kuffel, E. Autonomic recovery after exercise in trained athletes: Intensity and duration effects. Med. Sci. Sports Exerc. 2007, 39, 1366–1373. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, I.; Cejuela, R.; Seiler, S.; Larumbe, E.; Esteve-Lanao, J. Training-Intensity Distribution During an Ironman Season: Relationship With Competition Performance. Int. J. Sports Physiol. Perform. 2014, 9, 332–339. [Google Scholar] [CrossRef]
- Stöggl, T.; Sperlich, B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front. Physiol. 2014, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C. Validity of using functional threshold power and intermittent power to predict cross-country mountain bike race outcome. J. Sci. Cycl. 2014, 3, 16–20. [Google Scholar]
- Prins, L.; Terblanche, E.; Myburgh, K.H. Field and laboratory correlates of performance in competitive cross-country mountain bikers. J. Sports Sci. 2007, 25, 927–935. [Google Scholar] [CrossRef]
- Novak, A.R.; Bennett, K.J.M.; Fransen, J.; Dascombe, B.J. A multidimensional approach to performance prediction in Olympic distance cross-country mountain bikers. J. Sports Sci. 2018, 36, 71–78. [Google Scholar] [CrossRef]
- Schneeweiss, P.; Schellhorn, P.; Haigis, D.; Niess, A.; Martus, P.; Krauss, I. Predictive Ability of a Laboratory Performance Test in Mountain Bike Cross-country Olympic Athletes. Int. J. Sports Med. 2019, 40, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Ahrend, M.D.; Schneeweiss, P.; Martus, P.; Niess, A.M.; Krauss, I. Predictive ability of a comprehensive incremental test in mountain bike marathon. BMJ Open Sport Exerc. Med. 2018, 4, e000293. [Google Scholar] [CrossRef] [Green Version]
- Ahrend, M.D.; Schneeweiss, P.; Theobald, U.; Niess, A.M.; Krauss, I. Comparison of laboratory parameters of a mountain bike specific performance test and a simulated race performance in the field. J. Sci. Cycl. 2016, 5, 3–9. [Google Scholar]
- Schneeweiss, P.; Schellhorn, P.; Haigis, D.; Niess, A.; Martus, P.; Krauss, I. Cycling performance in short-term efforts: Laboratory and field-based data in XCO athletes. Sports Med. Int. Open 2020, 4, 19–26. [Google Scholar]
- Carmo, E.; Barroso, R.; Prado, D.; Inoue, A.; Machado, T.; Abad, C.; Loturco, I.; Tricoli, V. The laboratory-assessed performance predictors of elite cross-country marathon mountain bikers. Kinesiology 2021, 53, 262–270. [Google Scholar] [CrossRef]
- Allen, H.; Coggan, A. Training and Racing with a Power Meter; VeloPress: Boulder, CO, USA, 2010. [Google Scholar]
- Harriss, D.J.; MacSween, A.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2020 Update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Stephens, S.; Martin, D.T.; Lawton, E.; Lee, H.; Jenkins, D. Accuracy of SRM and power tap power monitoring systems for bicycling. Med. Sci. Sports Exerc. 2004, 36, 1252–1258. [Google Scholar] [CrossRef] [Green Version]
- Paton, C.D.; Hopkins, W.G. Tests of cycling performance. Sports Med. 2001, 31, 489–496. [Google Scholar] [CrossRef]
- Dickhuth, H.H.; Huonker, M.; Münzel, T.; Drexler, H.; Berg, A.; Keul, J. Individual anaerobic threshold for evaluation of competitive athletes and patients with left ventricular dysfunction. In Advances in Ergometry; Bachl, T.G., Löllgen, H., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991; pp. 176–179. [Google Scholar]
- Roecker, K.; Striegel, H.; Dickhuth, H.H. Heart-rate recommendations: Transfer between running and cycling exercise? Int. J. Sports Med. 2003, 24, 173–178. [Google Scholar] [CrossRef]
- Kuipers, H.; Verstappen, F.T.; Keizer, H.A.; Geurten, P.; van Kranenburg, G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int. J. Sports Med. 1985, 6, 197–201. [Google Scholar] [CrossRef]
- Skinner, J.S.; McLellan, T.H. The Transition from Aerobic to Anaerobic Metabolism. Res. Q. Exerc. Sport 1980, 51, 234–248. [Google Scholar] [CrossRef]
- Mader, A.; Heck, H. A Theory of the Metabolic Origin of “Anaerobic Threshold”. Int. J. Sports Med. 1986, 07, S45–S65. [Google Scholar]
- Jeffries, O.; Simmons, R.; Patterson, S.D.; Waldron, M. Functional Threshold Power Is Not Equivalent to Lactate Parameters in Trained Cyclists. J. Strength Cond. Res. 2021, 35, 2790–2794. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Morales, J.S.; Foster, C.; Lucia, A.; de la Villa, P. Is the Functional Threshold Power a Valid Surrogate of the Lactate Threshold? Int. J. Sports Physiol. Perform. 2018, 13, 1293–1298. [Google Scholar] [CrossRef]
- Röhrken, G.; Held, S.; Donath, L. Six Weeks of Polarized Versus Moderate Intensity Distribution: A Pilot Intervention Study. Front. Physiol. 2020, 11, 1210. [Google Scholar] [CrossRef]
- Treff, G.; Winkert, K.; Sareban, M.; Steinacker, J.M.; Becker, M.; Sperlich, B. Eleven-Week Preparation Involving Polarized Intensity Distribution Is Not Superior to Pyramidal Distribution in National Elite Rowers. Front. Physiol. 2017, 8, 515. [Google Scholar] [CrossRef]
- Neal, C.M.; Hunter, A.M.; Brennan, L.; O’Sullivan, A.; Hamilton, D.L.; De Vito, G.; Galloway, S.D. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J. Appl. Physiol. 2013, 114, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Rosenblat, M.A.; Perrotta, A.S.; Vicenzino, B. Polarized vs. Threshold Training Intensity Distribution on Endurance Sport Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Strength Cond. Res. 2019, 33, 3491–3500. [Google Scholar] [CrossRef]
- Inoue, A.; Impellizzeri, F.M.; Pires, F.O.; Pompeu, F.A.; Deslandes, A.C.; Santos, T.M. Effects of Sprint versus High-Intensity Aerobic Interval Training on Cross-Country Mountain Biking Performance: A Randomized Controlled Trial. PLoS ONE 2016, 11, e0145298. [Google Scholar] [CrossRef]
t0 (Baseline) | Week_1 | f | Week_2 | f | Week_3 | f | Week_4 | f | t1 (Retest) | |
---|---|---|---|---|---|---|---|---|---|---|
POL | MTB-PT & XCO race | Z5 (1.5 h) | 3 | Z5 (1.5 h) | 3 | Z5 (1.5 h) | 2 | Z5 | 0 | XCO race & MTB-PT |
Z2 (2 h) | 1 | Z2 (2 h) | 2 | Z2 (2 h) | 3 | Z2 (2 h) | 1 | |||
LIT | MTB-PT & XCO race | Z5 | 0 | Z5 | 0 | Z5 | 0 | Z5 | 0 | XCO race & MTB-PT |
Z2 (2–3 h) | 4 | Z2 (2–3.5 h) | 4 | Z2 (2.5–5 h) | 5 | Z2 (2 h) | 1 |
Age [years] | Height [m] | Body Mass [kg] | Female [n] | Male [n] | U17 [n] | U19 [n] | U23 [n] | Elite [n] | Race_1 [n] | Race_2 [n] | |
---|---|---|---|---|---|---|---|---|---|---|---|
LIT (n = 8) | 17.4 ± 1.9 | 1.75 ± 0.06 | 64.2 ± 7.3 | 2 | 6 | 2 | 4 | 2 | 0 | 3 | 5 |
POL (n = 10) | 18.4 ± 4.7 | 1.73 ± 0.11 | 61.2 ± 9.6 | 2 | 8 | 4 | 4 | 0 | 2 | 5 | 5 |
Total (n = 18) | 17.9 ± 3.6 | 1.74 ± 0.09 | 62.5 ± 8.6 | 4 | 14 | 6 | 8 | 2 | 2 | 8 | 10 |
POR | IAT | LT4 | MAP | TT10 | TT30 | TT60 | TT300 | ||
---|---|---|---|---|---|---|---|---|---|
LIT (n = 8) | Difference | −6.1 ± 25.6 (W) p = 0.263 | 5.9 ± 9.1 (W) p = 0.123 | 8 ± 12.4 (W) p = 0.123 | 8.1 ± 9.8 (W) p = 0.161 | 15.9 ± 73.5 (W) p = 0.779 | 23.1 ± 24 (W) p = 0.093 | 11.4 ± 27.9 (W) p = 0.401 | 20.6 ± 15.8 (W) p = 0.025 |
MAPE | −2.2 ± 9.6 (%) | 2.3 ± 4.1 (%) | 2.8 ± 4.5 (%) | 2.6 ± 2.9 (%) | 3.6 ± 8.9 (%) | 3.8 ± 4.4 (%) | 3.1 ± 7.1 (%) | 7.2 ± 6.3 (%) | |
POL (n = 10) | Difference | 11 ± 24.1 (W) p = 0.241 | 10.7 ± 13.3 (W) p = 0.028 | 13.5 ± 14 (W) p = 0.022 | 15.4 ± 15.1 (W) p = 0.028 | 5.4 ± 76.9 (W) p = 0.799 | −7.8 ± 47.1 (W) p = 0.721 | 13.4 ± 60.2 (W) p = 0.333 | 18.7 ± 21.4 (W) p = 0.022 |
MAPE | 4.4 ± 10.6 (%) | 5.1 ± 5.7 (%) | 6.1 ± 6.4 (%) | 4.8 ± 4.3 (%) | 1.2 ± 9.7 (%) | −0.8 ± 7.9 (%) | 4.3 ± 12.9 (%) | 6.6 ± 6.5 (%) | |
Total (n = 18) | Difference | 3.4 ± 25.6 (W) | 8.6 ± 11.6 (W) | 11.1 ± 13.2 (W) | 12.2 ± 13.2 (W) | 10.1 ± 73.4 (W) | 5.9 ± 40.8 (W) | 12.5 ± 47.4 (W) | 19.6 ± 18.6 (W) |
MAPE | 1.5 ± 10.4 (%) | 3.8 ± 5.1 (%) | 4.6 ± 5.7 (%) | 3.8 ± 3.8 (%) | 2.2 ± 9.1 (%) | 1.2 ± 6.8 (%) | 3.8 ± 10.5 (%) | 6.8 ± 6.2 (%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneeweiss, P.; Schellhorn, P.; Haigis, D.; Niess, A.M.; Martus, P.; Krauss, I. Effect of Two Different Training Interventions on Cycling Performance in Mountain Bike Cross-Country Olympic Athletes. Sports 2022, 10, 53. https://doi.org/10.3390/sports10040053
Schneeweiss P, Schellhorn P, Haigis D, Niess AM, Martus P, Krauss I. Effect of Two Different Training Interventions on Cycling Performance in Mountain Bike Cross-Country Olympic Athletes. Sports. 2022; 10(4):53. https://doi.org/10.3390/sports10040053
Chicago/Turabian StyleSchneeweiss, Patrick, Philipp Schellhorn, Daniel Haigis, Andreas Michael Niess, Peter Martus, and Inga Krauss. 2022. "Effect of Two Different Training Interventions on Cycling Performance in Mountain Bike Cross-Country Olympic Athletes" Sports 10, no. 4: 53. https://doi.org/10.3390/sports10040053
APA StyleSchneeweiss, P., Schellhorn, P., Haigis, D., Niess, A. M., Martus, P., & Krauss, I. (2022). Effect of Two Different Training Interventions on Cycling Performance in Mountain Bike Cross-Country Olympic Athletes. Sports, 10(4), 53. https://doi.org/10.3390/sports10040053