Experience, Training Preferences, and Fighting Style Are Differentially Related to Measures of Body Composition, Strength, and Power in Male Brazilian Jiu Jitsu Athletes—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Training and Competition Preferences
2.4. Body Composition Assessments
2.5. Strength Assessments
2.6. Velocity-Based Performance Assessments
2.7. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Maximal Strength
3.3. Velocity-Based Performance Assessments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreato, L.V.; Follmer, B.; Celidonio, C.L.; da Silva Honorato, A. Brazilian Jiu-Jitsu combat among different categories: Time-motion and physiology. A systematic review. Strength Cond. J. 2016, 38, 44–54. [Google Scholar] [CrossRef]
- Andreato, L.V.; Lara, F.J.D.; Andrade, A.; Branco, B.H.M. Physical and physiological profiles of Brazilian Jiu-Jitsu athletes: A systematic review. Sport. Med.-Open 2017, 3, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Brazilian Jiu Jitsu Federation. Rule Book; International Brazilian Jiu Jitsu Federation: Rio de Janeiro, Brazil, 2018; Volume 5.1. [Google Scholar]
- Del Vecchio, F.; Bianchi, S.; Hirata, S.; Chacon-Mikahili, M. Morphofunctional analysis of Brazilian jiu-jitsu practitioners and study of the temporality and quantification of motor actions in the modality. Mov. Percept. 2007, 7, 263–281. [Google Scholar]
- Andreato, L.V.; Franchini, E.; De Moraes, S.M.; Pastório, J.J.; Da Silva, D.F.; Esteves, J.V.; Branco, B.H. Physiological and technical-tactical analysis in Brazilian Jiu-Jitsu competition. Asian J. Sport. Med. 2013, 4, 137. [Google Scholar] [CrossRef] [Green Version]
- Andreato, L.V.; Julio, U.F.; Panissa, V.L.G.; Esteves, J.V.D.C.; Hardt, F.; de Moraes, S.M.F.; de Souza, C.O.; Franchini, E. Brazilian Jiu-Jitsu simulated competition part II: Physical performance, time-motion, technical-tactical analyses, and perceptual responses. J. Strength Cond. Res. 2015, 29, 2015–2025. [Google Scholar] [CrossRef] [PubMed]
- Brandão, F.; Fernandes, H.M.; Alves, J.V.; Fonseca, S.; Reis, V.M. Hematological and biochemical markers after a Brazilian Jiu-Jitsu tournament in world-class athletes. Rev. Bras. Cineantropometria E Desempenho Hum. 2014, 16, 144–151. [Google Scholar]
- Andreato, L.V.; Esteves, J.; Gomes, T.; Andreato, T.V.; Alcantara, B.; Almeida, D. Morphological profile of Brazilian Jiu-Jitsu athletes of different competitive levels. Mov. Percept. 2010, 11, 137–145. [Google Scholar]
- Díaz Lara, F.J.; Garcia Garcia, J.M.; Fernandes Monteiro, L.; Abian Vicen, J. Body composition, isometric hand grip, and explosive stregth leg-similitarities and differences between novices and experts in an international competition of Brazilian Jiu Jiutsu. Arch Budo 2014, 10, 211–217. [Google Scholar]
- Báez, E.; Franchini, E.; Ramírez-Campillo, R.; Cañas-Jamett, R.; Herrera, T.; Burgos-Jara, C.; Henríquez-Olguín, C. Anthropometric characteristics of top-class Brazilian Jiu Jitsu athletes: Role of fighting style. Int. J. Morphol. 2014, 32, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Marinho, B.F.; Andreato, L.V.; Follmer, B.; Franchini, E. Comparison of body composition and physical fitness in elite and non-elite Brazilian jiu-jitsu athletes. Sci. Sport. 2016, 31, 129–134. [Google Scholar] [CrossRef]
- Dervis, S.; Coombs, G.B.; Chaseling, G.K.; Filingeri, D.; Smoljanic, J.; Jay, O. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J. Appl. Physiol. 2016, 120, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, H.; Slater, G. Losing, gaining and making weight for athletes. In Sport and Exercise Nutrition; Wiley-Blackwell: West Sussex, UK, 2011; pp. 210–232. [Google Scholar]
- Schipilow, J.; Macdonald, H.; Liphardt, A.; Kan, M.; Boyd, S. Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: An HR-pQCT study. Bone 2013, 56, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieber, R.L.; Fridén, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000, 23, 1647–1666. [Google Scholar] [CrossRef]
- Stock, M.S.; Mota, J.A.; Hernandez, J.M.; Thompson, B.J. Echo intensity and muscle thickness as predictors of athleticism and isometric strength in middle—School boys. Muscle Nerve 2017, 55, 685–692. [Google Scholar] [CrossRef]
- Silva, B.; Júnior, M.M.; Rogério, F.; Dias, I. Physical tests discriminate Brazilian jiu-jitsu practioners? Rev. Bras. Ciência E Mov. 2014, 22, 92–98. [Google Scholar]
- Oliveira, M.; Moreira, D.; Godoy, J.; Cambraia, A. Evaluation of the palmar grip strength in Jiu-Jitsu athletes in competitive level. Rev. Bras. Ciência E Mov. 2006, 14, 63–70. [Google Scholar] [CrossRef]
- Ratamess, N.A.; Alvar, B.A.; Evetoch, T.K.; Housh, T.J.; Kibler, W.B.; Kraemer, W.J.; Triplett, N.T. American College of Sports Medicine Position Stand. Progression models in resistance training for healthy adults. Med. Sci. Sport. Exerc. 2009, 41, 687. [Google Scholar]
- Jones, N.B.; Ledford, E. Strength and conditioning for Brazilian jiu-jitsu. Strength Cond. J. 2012, 34, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Ratamess, N.A. Strength and conditioning for grappling sports. Strength Cond. J. 2011, 33, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, B.V.C.; De Moura Simim, M.A.; Marocolo, M.; Franchini, E.; Da Mota, G.R. Optimal load for the peak power and maximal strength of the upper body in Brazilian Jiu-Jitsu athletes. J. Strength Cond. Res. 2015, 29, 1616–1621. [Google Scholar] [CrossRef]
- Zweifel, M. Importance of horizontally loaded movements to sports performance. Strength Cond. J. 2017, 39, 21–26. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A.; Cimadoro, G.; Cleather, D.J. The magical horizontal force muscle? A preliminary study examining the “force-vector” theory. Sports 2019, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Tavares, L.D.; Zanchetta, F.; Lasevicius, T.; Anorato, A.; de Souza, E.O.; Laurentino, G.C.; Franchini, E. Optimal load for the muscle power profile of prone bench pull in Brazilian Jiu-Jitsu athletes. Sport Sci. Health 2018, 14, 143–149. [Google Scholar] [CrossRef]
- International Brazilian Jui Jitsu Federation. General System of Graduation; International Brazilian Jiu Jitsu Federation: Rio de Janeiro, Brazil, 2015; Volume 2. [Google Scholar]
- Kida, N.; Oda, S.; Matsumura, M. Intensive baseball practice improves the Go/Nogo reaction time, but not the simple reaction time. Cogn. Brain Res. 2005, 22, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Santalla, A.; Naranjo, J.; Terrados, N. Muscle efficiency improves over time in world-class cyclists. Med. Sci. Sport. Exerc. 2009, 41, 1096–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micklewright, D.; Parry, D.; Robinson, T.; Deacon, G.; Renfree, A.; St Clair Gibson, A.; Matthews, W.J. Risk perception influences athletic pacing strategy. Med. Sci. Sport. Exerc. 2015, 47, 1026–1037. [Google Scholar] [CrossRef]
- Øvretveit, K. Anthropometric and physiological characteristics of Brazilian Jiu-Jitsu athletes. J. Strength Cond. Res. 2018, 32, 997–1004. [Google Scholar] [CrossRef]
- Liguori, G.; American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Sheppard, J.M.; Triplett, N.T. Program Design for Resistance Training. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 439–470. [Google Scholar]
- Vidal Andreato, L.; Del Conti Esteves, J.V.; Ferreira Julio, U.; Leme Gonçalves Panissa, V.; Hardt, F.; Franzoi de Moraes, S.M.; Franchini, E. Physical performance, time-motion, technical-tactical analyses, and perceptual responses in Brazilian jiu-jitsu matches of varied duration. Kinesiology 2017, 49, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef]
- García-Pallarés, J.; López-Gullón, J.M.; Muriel, X.; Díaz, A.; Izquierdo, M. Physical fitness factors to predict male Olympic wrestling performance. Eur. J. Appl. Physiol. 2011, 111, 1747–1758. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Interlimb asymmetries: Understanding how to calculate differences from bilateral and unilateral tests. Strength Cond. J. 2018, 40, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mangine, G.T.; Hoffman, J.R.; Wang, R.; Gonzalez, A.M.; Townsend, J.R.; Wells, A.J.; Jajtner, A.R.; Beyer, K.S.; Boone, C.H.; Miramonti, A.A. Resistance training intensity and volume affect changes in rate of force development in resistance-trained men. Eur. J. Appl. Physiol. 2016, 116, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [Green Version]
- Rouder, J.N.; Morey, R.D.; Speckman, P.L.; Province, J.M. Default Bayes factors for ANOVA designs. J. Math. Psychol. 2012, 56, 356–374. [Google Scholar] [CrossRef]
- Wagenmakers, E.-J.; Love, J.; Marsman, M.; Jamil, T.; Ly, A.; Verhagen, J.; Selker, R.; Gronau, Q.F.; Dropmann, D.; Boutin, B. Bayesian inference for psychology. Part II: Example applications with JASP. Psychon. Bull. Rev. 2018, 25, 58–76. [Google Scholar] [CrossRef]
- Fosbøl, M.Ø.; Zerahn, B. Contemporary methods of body composition measurement. Clin. Physiol. Funct. Imaging 2015, 35, 81–97. [Google Scholar] [CrossRef]
- Miller, T.A. NSCA’s Guide to Tests and Assessments; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
Mean ± SD | Range | |
---|---|---|
Body fat percentage (%) | 18.3 ± 4.7 | (7.8–25.3) |
Fat mass (kg) | 13.9 ± 4.6 | (5.6–20.5) |
Non-bone lean mass | ||
Arms (kg) | 8.9 ± 1.6 | (6.4–11) |
Legs (kg) | 20.5 ± 4.2 | (13.9–26.8) |
Trunk (kg) | 28.0 ± 4.1 | (20–33.6) |
Total (kg) | 61.1 ± 10.0 | (43.6–74.8) |
Bone mineral density (g⸱cm−2) | 1.4 ± 0.1 | (1.2–1.6) |
Bone mineral content | ||
Arms (kg) | 0.5 ± 0.1 | (0.4–0.6) |
Legs (kg) | 1.2 ± 0.2 | (0.8–1.6) |
Trunk (kg) | 1.0 ± 0.2 | (0.7–1.4) |
Total (kg) | 3.4 ± 0.6 | (2.3–4.3) |
Maximal isometric handgrip strength (kg) | ||
Dominant hand (kg) | 56.6 ± 14.4 | (35.5–77.5) |
Non-dominant hand (kg) | 54.6 ± 13.2 | (34.1–77.5) |
Total (kg) | 111.1 ± 27.1 | (70.8–155.0) |
Difference (kg) | 3.6 ± 4.4 | (−3.4–10.4) |
Bilateral strength asymmetry (%) | 7.8 ± 5.0 | (0.0–15.1) |
Bench press strength | ||
Absolute (kg) | 100 ± 24.2 | (47–141.1) |
Relative (kg⸱body mass−1) | 1.3 ± 0.3 | (0.7–1.7) |
Glute bridge strength | ||
Absolute (kg) | 198.9 ± 38.5 | (128–243.7) |
Relative (kg⸱body mass−1) | 2.5 ± 0.5 | (1.9–3.3) |
Prone bench row strength | ||
Absolute (kg) | 79.8 ± 12.9 | (52.2–107.1) |
Relative (kg⸱body mass−1) | 1.0 ± 0.2 | (0.8–1.3) |
Belt Rank | Experience | Gi Preference | Fighting Style | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BJJ | RT | Training | Competition | ||||||||||||||
τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | ||||||
Height | 0.27 | 0.7 | 0.16 | 0.5 | 0.14 | 0.4 | −0.42 | 2.2 | −0.57 * | 5.3 | −0.02 | 0.4 | |||||
Body mass | 0.16 | 0.5 | −0.01 | 0.4 | 0.03 | 0.4 | −0.43 | 2.4 | −0.35 | 1.0 | 0.06 | 0.4 | |||||
Body fat percentage | −0.53 * | 6.5 | −0.66 * | 30.8 | −0.22 | 0.6 | −0.37 | 1.4 | 0.20 | 0.5 | 0.05 | 0.4 | |||||
Fat mass | −0.31 | 0.9 | −0.44 * | 2.6 | −0.05 | 0.4 | −0.43 | 2.4 | 0.04 | 0.4 | 0.16 | 0.5 | |||||
Non-bone lean mass | |||||||||||||||||
Arms | 0.22 | 0.6 | 0.12 | 0.4 | 0.26 | 0.7 | −0.20 | 0.5 | −0.18 | 0.5 | 0.19 | 0.5 | |||||
Legs | 0.40 | 1.8 | 0.23 | 0.6 | 0.23 | 0.6 | −0.27 | 0.7 | −0.44 | 1.8 | 0.09 | 0.4 | |||||
Trunk | 0.40 | 1.8 | 0.20 | 0.5 | 0.26 | 0.7 | −0.33 | 1.1 | −0.53 * | 3.6 | −0.03 | 0.4 | |||||
Total | 0.40 | 1.8 | 0.23 | 0.6 | 0.26 | 0.7 | −0.27 | 0.7 | −0.44 | 1.8 | 0.09 | 0.4 | |||||
Bone mineral density | 0.28 | 0.8 | 0.23 | 0.6 | 0.13 | 0.4 | −0.20 | 0.5 | −0.39 | 1.3 | −0.28 | 0.8 | |||||
Bone mineral content | |||||||||||||||||
Arms | 0.28 | 0.8 | 0.12 | 0.4 | 0.13 | 0.4 | −0.20 | 0.5 | −0.48 | 2.5 | 0.06 | 0.4 | |||||
Legs | 0.31 | 0.9 | 0.23 | 0.6 | 0.16 | 0.4 | −0.20 | 0.5 | −0.66 * | 12.4 | −0.06 | 0.4 | |||||
Trunk | 0.31 | 0.9 | 0.20 | 0.5 | 0.08 | 0.4 | −0.40 | 1.8 | −0.57 * | 5.3 | −0.25 | 0.7 | |||||
Total | 0.34 | 1.1 | 0.23 | 0.6 | 0.16 | 0.4 | −0.30 | 0.9 | −0.57 * | 5.3 | −0.13 | 0.4 |
Belt Rank | Experience | Gi Preference | Fighting Style | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BJJ | RT | Training | Competition | ||||||||||||||
τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | ||||||
MIHS | |||||||||||||||||
Dominant | 0.25 | 0.7 | 0.18 | 0.5 | 0.01 | 0.3 | 0.13 | 0.4 | −0.35 | 1.0 | 0.16 | 0.5 | |||||
Non-dominant | 0.28 | 0.8 | 0.15 | 0.4 | 0.16 | 0.4 | −0.20 | 0.5 | −0.31 | 0.8 | 0.06 | 0.4 | |||||
Total | 0.22 | 0.6 | 0.12 | 0.4 | 0.01 | 0.3 | 0.03 | 0.4 | −0.35 | 1.0 | 0.09 | 0.4 | |||||
Difference | −0.16 | 0.5 | 0.01 | 0.4 | 0.03 | 0.4 | 0.30 | 0.9 | 0.09 | 0.4 | 0.25 | 0.7 | |||||
Asymmetry | −0.25 | 0.7 | −0.04 | 0.4 | 0.08 | 0.4 | 0.20 | 0.5 | 0.01 | 0.4 | 0.19 | 0.5 | |||||
Bench press | |||||||||||||||||
Absolute | 0.10 | 0.4 | 0.04 | 0.4 | 0.57 * | 9.9 | 0.01 | 0.3 | 0.01 | 0.4 | 0.19 | 0.5 | |||||
Relative | −0.04 | 0.4 | −0.07 | 0.4 | 0.52 * | 5.6 | 0.43 | 2.4 | 0.35 | 1.0 | 0.19 | 0.5 | |||||
Glute bridge | |||||||||||||||||
Absolute | 0.22 | 0.6 | 0.2 | 0.5 | 0.73 * | 75.1 | 0.03 | 0.4 | −0.39 | 1.3 | 0.19 | 0.5 | |||||
Relative | −0.02 | 0.4 | 0.07 | 0.4 | 0.52 * | 5.6 | 0.37 | 1.4 | −0.09 | 0.4 | 0.31 | 1.0 | |||||
Prone bench-pull | |||||||||||||||||
Absolute | 0.19 | 0.5 | 0.07 | 0.4 | 0.44 * | 2.6 | 0.17 | 0.5 | −0.22 | 0.6 | 0.13 | 0.4 | |||||
Relative | 0.04 | 0.4 | 0.07 | 0.4 | 0.29 | 0.8 | 0.70 * | 51.9 | 0.31 | 0.8 | 0.22 | 0.6 |
Belt Rank | Experience | Gi Preference | Fighting Style | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BJJ | RT | Training | Competition | ||||||||||||||
τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | τ | BF₁₀ | ||||||
Bench press velocity | |||||||||||||||||
Peak at 7 kg | −0.40 | 1.8 | −0.39 | 1.7 | 0.23 | 0.6 | −0.17 | 0.5 | −0.22 | 0.6 | 0.38 | 1.5 | |||||
Peak at 30% | −0.19 | 0.5 | −0.23 | 0.6 | −0.08 | 0.4 | −0.40 | 1.8 | −0.44 | 1.8 | 0.35 | 1.2 | |||||
Peak at 40% | −0.22 | 0.6 | −0.12 | 0.4 | −0.44 * | 2.6 | −0.20 | 0.5 | 0.01 | 0.4 | −0.03 | 0.4 | |||||
Peak at 50% | −0.12 | 0.4 | −0.04 | 0.4 | −0.20 | 0.5 | −0.10 | 0.4 | 0.24 | 0.6 | 0.40 | 1.7 | |||||
Peak at 60% | −0.30 | 0.9 | −0.30 | 0.9 | −0.38 | 1.5 | −0.32 | 1.0 | −0.31 | 0.8 | 0.19 | 0.5 | |||||
Average at 7 kg | −0.31 | 1.0 | −0.31 | 0.9 | 0.28 | 0.8 | −0.19 | 0.5 | −0.31 | 0.8 | 0.41 | 2.0 | |||||
Average at 30% | −0.09 | 0.4 | −0.12 | 0.4 | 0.11 | 0.4 | −0.29 | 0.8 | −0.52 * | 3.5 | 0.31 | 0.9 | |||||
Average at 40% | −0.06 | 0.4 | −0.08 | 0.4 | −0.04 | 0.4 | −0.17 | 0.5 | −0.50 | 2.8 | 0.06 | 0.4 | |||||
Average at 50% | −0.15 | 0.4 | −0.18 | 0.5 | 0.08 | 0.4 | −0.19 | 0.5 | −0.58 * | 5.8 | 0.30 | 0.9 | |||||
Average at 60% | −0.16 | 0.5 | −0.20 | 0.5 | −0.05 | 0.4 | −0.25 | 0.7 | −0.67 * | 14.0 | 0.32 | 1.0 | |||||
Glute bridge velocity | |||||||||||||||||
Peak at 7 kg | −0.19 | 0.5 | −0.18 | 0.5 | 0.36 | 1.4 | −0.07 | 0.4 | −0.26 | 0.7 | 0.16 | 0.5 | |||||
Peak at 30% | −0.19 | 0.5 | −0.23 | 0.6 | 0.29 | 0.8 | −0.37 | 1.4 | −0.26 | 0.7 | −0.09 | 0.4 | |||||
Peak at 40% | −0.16 | 0.5 | −0.20 | 0.5 | 0.36 | 1.4 | −0.10 | 0.4 | −0.18 | 0.5 | 0.01 | 0.3 | |||||
Peak at 50% | −0.34 | 1.2 | −0.41 | 1.9 | 0.04 | 0.4 | −0.05 | 0.4 | 0.01 | 0.4 | −0.19 | 0.5 | |||||
Peak at 60% | −0.36 | 1.3 | −0.45 * | 2.8 | 0.21 | 0.6 | −0.10 | 0.4 | −0.07 | 0.4 | −0.08 | 0.4 | |||||
Average at 7 kg | −0.19 | 0.5 | −0.18 | 0.5 | 0.44* | 2.6 | −0.03 | 0.4 | −0.35 | 1.0 | 0.22 | 0.6 | |||||
Average at 30% | −0.22 | 0.6 | −0.25 | 0.7 | 0.21 | 0.6 | −0.36 | 1.3 | −0.13 | 0.4 | −0.11 | 0.4 | |||||
Average at 40% | −0.25 | 0.7 | −0.28 | 0.8 | 0.29 | 0.8 | −0.03 | 0.4 | −0.13 | 0.4 | 0.06 | 0.4 | |||||
Average at 50% | −0.39 | 1.6 | −0.46 * | 3.1 | 0.04 | 0.4 | −0.02 | 0.4 | 0.04 | 0.4 | −0.17 | 0.5 | |||||
Average at 60% | −0.33 | 1.0 | −0.46 * | 3.1 | 0.09 | 0.4 | −0.08 | 0.4 | 0.02 | 0.4 | −0.08 | 0.4 | |||||
Prone bench row velocity | |||||||||||||||||
Peak at 7 kg | −0.28 | 0.8 | −0.39 | 1.7 | 0.18 | 0.5 | −0.23 | 0.6 | 0.04 | 0.4 | 0.38 | 1.5 | |||||
Peak at 30% | −0.28 | 0.8 | −0.34 | 1.1 | 0.13 | 0.4 | −0.27 | 0.7 | −0.18 | 0.5 | 0.31 | 1.0 | |||||
Peak at 40% | −0.09 | 0.4 | −0.19 | 0.5 | 0.41 | 1.9 | −0.13 | 0.4 | −0.18 | 0.5 | 0.21 | 0.5 | |||||
Peak at 50% | −0.04 | 0.4 | −0.20 | 0.5 | 0.10 | 0.4 | −0.37 | 1.4 | −0.35 | 1.0 | 0.13 | 0.4 | |||||
Peak at 60% | 0.31 | 0.9 | 0.20 | 0.5 | 0.47 * | 3.3 | 0.01 | 0.3 | −0.22 | 0.6 | 0.13 | 0.4 | |||||
Average at 7 kg | −0.31 | 1.0 | −0.39 | 1.7 | 0.20 | 0.5 | −0.25 | 0.7 | 0.09 | 0.4 | 0.32 | 1.0 | |||||
Average at 30% | −0.22 | 0.6 | −0.31 | 0.9 | 0.10 | 0.4 | −0.30 | 0.9 | −0.26 | 0.7 | 0.28 | 0.8 | |||||
Average at 40% | −0.19 | 0.5 | −0.28 | 0.8 | 0.26 | 0.7 | −0.33 | 1.1 | −0.13 | 0.4 | 0.16 | 0.5 | |||||
Average at 50% | −0.06 | 0.4 | −0.22 | 0.6 | 0.07 | 0.4 | −0.40 | 1.9 | −0.26 | 0.7 | 0.14 | 0.4 | |||||
Average at 60% | 0.11 | 0.4 | −0.03 | 0.4 | 0.17 | 0.5 | −0.41 | 2.0 | −0.20 | 0.5 | 0.13 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeda, C.G.; Mangine, G.T.; Green, Z.H.; Feito, Y.; French, D.N. Experience, Training Preferences, and Fighting Style Are Differentially Related to Measures of Body Composition, Strength, and Power in Male Brazilian Jiu Jitsu Athletes—A Pilot Study. Sports 2023, 11, 13. https://doi.org/10.3390/sports11010013
Almeda CG, Mangine GT, Green ZH, Feito Y, French DN. Experience, Training Preferences, and Fighting Style Are Differentially Related to Measures of Body Composition, Strength, and Power in Male Brazilian Jiu Jitsu Athletes—A Pilot Study. Sports. 2023; 11(1):13. https://doi.org/10.3390/sports11010013
Chicago/Turabian StyleAlmeda, Christian G., Gerald T. Mangine, Zackary H. Green, Yuri Feito, and Duncan N. French. 2023. "Experience, Training Preferences, and Fighting Style Are Differentially Related to Measures of Body Composition, Strength, and Power in Male Brazilian Jiu Jitsu Athletes—A Pilot Study" Sports 11, no. 1: 13. https://doi.org/10.3390/sports11010013
APA StyleAlmeda, C. G., Mangine, G. T., Green, Z. H., Feito, Y., & French, D. N. (2023). Experience, Training Preferences, and Fighting Style Are Differentially Related to Measures of Body Composition, Strength, and Power in Male Brazilian Jiu Jitsu Athletes—A Pilot Study. Sports, 11(1), 13. https://doi.org/10.3390/sports11010013