Relationship between Physical Performance, Anthropometric Measurements and Stroke Velocity in Youth Tennis Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Overview
2.3. Anthropometric Evaluation
2.4. Physical Tests
2.5. On-Court Stroke Tests (Forehand, Backhand and Serve)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandez-Fernandez, J.; Sanz-Rivas, D.; Mendez-Villanueva, A. A review of the activity profile and physiological demands of tennis match play. Strength Cond. J. 2009, 31, 15–26. [Google Scholar] [CrossRef]
- Kaya, M.; Soyal, M.; Karakuş, M. The effect of the leg and back strength of the serve and tennis players to the serve throwing speed and agility. Phys. Educ. Stud. 2018, 22, 237–242. [Google Scholar] [CrossRef] [Green Version]
- König, D.; Huonker, M.; Schmid, A.; Halle, M.; Berg, A.; Keul, J. Cardiovascular, metabolic, and hormonal parameters in professional tennis players. Med. Sci. Sports Exerc. 2001, 33, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Fett, J.; Ulbricht, A.; Ferrauti, A. Impact of physical performance and anthropometric characteristics on serve velocity in elite junior tennis players. J. Strength Cond. Res. 2020, 34, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.C.; Wang, X.; Feldman, B.B.; Ruth, T.; Signorile, J. Can laboratory-based tennis profiles predict field tests of tennis performance? J. Strength Cond. Res. 2004, 18, 136–143. [Google Scholar] [CrossRef]
- Sánchez-Pay, A.; Ramón-Llin, J.; Martínez-Gallego, R.; Sanz-Rivas, D.; Sánchez-Alcaraz, B.J.; Frutos, S. Fitness testing in tennis: Influence of anthropometric characteristics, physical performance, and functional test on serve velocity in professional players. PLoS ONE 2021, 16, e0259497. [Google Scholar] [CrossRef]
- Baiget, E.; Corbi, F.; Fuentes, J.P.; Fernandez-Fernandez, J. The relationship between maximum isometric strength and ball velocity in the tennis serve. J. Hum. Kinet. 2016, 53, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Landlinger, J.; Stöggl, T.; Lindinger, S.; Wagner, H.; Müller, E. Differences in ball speed and accuracy of tennis groundstrokes between elite and high-performance players. Eur. J. Sport Sci. 2011, 4, 301–308. [Google Scholar] [CrossRef]
- Vaverka, F.; Cernosek, M. Association between body height and serve speed in elite tennis players. Sport Biomech. 2013, 12, 30–37. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Physical Status: The Use and Interpretation of Anthropometry; Report of a WHO Expert Committee; WHO Technical Report Series 854; World Health Organization: Geneva, Switzerland, 1995.
- American Alliance for Health, Physical Education, Recreation and Dance; Health-Related Physical Fitness Test Manual; American Alliance for Health, Physical Education, Recreation and Dance: Reston, VA, USA, 1980.
- Council of Europe. Eurofit: Handbook for the Eurofit Tests of Physical Fitness; Council of Europe: Rome, Italy, 1988. [Google Scholar]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Parpa, K.; Michaelides, M.A. The effect of transition period on performance parameters in elite female soccer players. Int. J. Sports Med. 2020, 41, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, P.R.; Fonseca, A.J.; Castro, A.W.; Greve, J.M.; Hernandez, A.J. Reproducibility of maximum aerobic power (VO2max) among soccer players using a modified heck protocol. Clinics 2007, 62, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Parpa, K.; Michaelides, M.A. Maximal aerobic power using the modified heck protocol: Prediction models. Int. J. Sports Med. 2002, 43, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.; Marshall, R. The accuracy of DLT extrapolation in three-dimensional motion analysis. J. Biomech. 1986, 19, 781–785. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Baiget, E.; Corbi, F.; del López, A.J.L. Influence of anthropometric, ball impact and landing location parameters on serve velocity in elite tennis competition. Biol. Sport. 2023, 40, 273–281. [Google Scholar] [CrossRef]
- Filipčič, A.; Filipčič, T. The influence of tennis motor abilities and anthropometric measures on the competition successfulness of 11 and 12 year-old female tennis players. Acta Univ. Palacki 2005, 35, 35–41. [Google Scholar]
- Bergeron, M.F.; Maresh, C.M.; Kraemer, W.J.; Abraham, A.; Conroy, B.; Gabaree, C. Tennis: A physiological profile during match play. Int. J. Sports Med. 1991, 12, 474–479. [Google Scholar] [CrossRef]
- Kilit, B.; Şenel, Ö.; Arslan, E.; Can, S. Physiological responses and match characteristics in professional tennis players during a one-hour simulated tennis match. J. Hum. Kinet. 2016, 2, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Girard, O.; Millet, G.P. Physical determinants of tennis performance in competitive teenage players. J. Strength Cond. Res. 2009, 6, 1867–1872. [Google Scholar] [CrossRef]
- Pugh, S.F.; Kovaleski, J.E.; Heitman, R.J.; Gilley, W.F. Upper and lower body strength in relation to ball speed during a serve by male collegiate tennis players. Percept. Mot. Skills 2003, 97, 867–872. [Google Scholar] [CrossRef]
- Ulbricht, A.; Fernandez-Fernandez, J.; Mendez-Villanueva, A.; Ferrauti, A. Impact of Fitness Characteristics on Tennis Performance in Elite Junior Tennis Players. J. Strength Cond. Res. 2016, 30, 989–998. [Google Scholar] [CrossRef]
Variable | Entire Group (n = 27) | Males (n = 16) | Females (n = 11) |
---|---|---|---|
Age (years) | 15.74 ± 1.56 | 15.69 ± 1.70 | 15.82 ± 1.40 |
Height (cm) | 172.30 ± 8.823 | 177.50 ± 6.06 | 164.73 ± 6.42 * |
Weight (kg) | 67.87 ± 8.95 | 71.06 ± 9.35 | 63.23 ± 6.11 * |
Body mass index (kg.m−2) | 22.90 ± 2.62 | 22.58 ± 2.77 | 23.36 ± 2.45 |
Body fat (%) | 20.19 ± 7.50 | 15.00 ± 3.41 | 27.74 ± 4.82 * |
Variable | Entire Group (n = 27) | Males (n = 16) | Females (n = 11) | 95% CI of the Difference Lower–Upper | Cohen’s d |
---|---|---|---|---|---|
Physical Test | |||||
Relative right handgrip strength (kg/BMI) | 1.88 ± 0.48 | 2.16 ± 0.40 | 1.47 ± 0.23 | 0.41–0.96 | 2.11 |
Relative left handgrip strength (kg/BMI) | 1.63 ± 0.43 | 1.89 ± 0.31 | 1.25 ± 0.24 | 0.42–0.87 | 2.31 |
Flexibility (cm) | 36.52 ± 5.42 | 35.84 ± 5.99 | 37.50 ± 4.53 | −6.06–2.75 | |
CMJ (cm) | 36.02 ± 8.03 | 41.29 ± 5.16 | 28.37 ± 4.37* | −2.14–4.20 | 2.70 |
SJ (cm) | 34.82 ± 3.89 | 35.24 ± 3.89 | 34.21 ± 4.01 | 8.99–16.84 | |
RT (min) | 13.78 ± 2.85 | 15.64 ± 1.85 | 11.07 ± 1.55* | 3.16–5.97 | 2.67 |
VO2max (mL/kg/min) | 54.45 ± 10.94 | 59.55 ± 11.46 | 47.03 ± 3.45 * | 5.14–19.89 | 1.47 |
HRLT (bpm) | 169.67 ± 15.84 | 173.25 ± 12.19 | 164.45 ± 19.46 | −3.72–21.31 | |
HRRC (bpm) | 187.30 ± 12.62 | 189.00 ± 12.28 | 184.82 ± 13.28 | −6.05–14.4 | |
HRmax (bpm) | 198.44 ± 9.72 | 199.19 ± 10.83 | 197.36 ± 8.21 | −6.13–9.78 | |
VRC (km/h) | 12.04 ± 1.78 | 12.90 ± 1.73 | 10.80 ± 0.93 * | 1.04–3.16 | 1.51 |
VVO2max (km/h) | 14.27 ± 1.71 | 15.38 ± 1.18 | 12.66 ± 0.83 * | 1.93–3.51 | 2.66 |
Court Test | |||||
Serve (km/h) | 163.19 ± 17.62 | 174.69 ± 1.92 | 146.45 ± 8.63 * | 19.58–36.89 | 2.70 |
Forehand (km/h) | 132.96 ± 13.41 | 139.00 ± 13.69 | 124.18 ± 6.59 * | 6.63–23.00 | 1.38 |
Backhand (km/h) | 121.85 ± 11.19 | 127.19 ± 10.45 | 114.09 ± 7.08 * | 5.64–20.56 | 1.47 |
Variable | Entire Group (n = 27) | Males (n = 16) | Females (n = 11) | 95% CI of the Difference Lower–Upper |
---|---|---|---|---|
Right quadriceps 60 deg/s (Nm/kg) | 2.88 ± 0.53 | 3.08 ± 0.43 | 2.57 ± 0.53 ** | 0.13–0.89 |
Left quadriceps 60 deg/s (Nm/kg) | 2.77 ± 0.65 | 3.09 ± 0.64 | 2.31 ± 0.30 ** | 0.41–1.16 |
Right hamstring 60 deg/s (Nm/kg) | 1.92 ± 0.42 | 2.19 ± 0.24 | 1.50 ± 0.25 ** | 0.50–0.90 |
Left hamstring 60 deg/s (Nm/kg) | 1.91 ± 0.46 | 2.20 ± 0.32 | 1.48 ± 0.27 ** | 0.47–0.96 |
Right quadriceps 300 deg/s (Nm/kg) | 1.40 ± 0.31 | 1.58 ± 0.20 | 1.13 ± 0.23 ** | 0.28–0.62 |
Left quadriceps 300 deg/s (Nm/kg) | 1.33 ± 0.28 | 1.50 ± 0.21 | 1.08 ± 0.15 ** | 0.28–0.58 |
Right hamstring 300 deg/s (Nm/kg) | 1.12 ± 0.26 | 1.28 ± 0.17 | 0.89 ± 0.19 ** | 0.25–0.53 |
Left hamstring 300 deg/s (Nm/kg) | 1.19 ± 0.28 | 1.32 ± 0.25 | 0.99 ± 0.19 ** | 0.15–0.51 |
Variable | Serve Velocity (km/h) | Forehand Velocity (km/h) | Backhand Velocity (km/h) | |||
---|---|---|---|---|---|---|
Males (n = 16) | Females (n = 11) | Males (n = 16) | Females (n = 11) | Males (n = 16) | Females (n = 11 ) | |
Age (years) | 0.39 | 0.28 | 0.03 | 0.39 | 0.11 | 0.45 |
Height (cm) | 0.60 * | 0.46 | 0.58 * | 0.19 | 0.30 | 0.29 |
Weight (kg) | 0.35 | 0.69* | 0.10 | 0.55 | 0.017 | 0.37 |
Body fat (%) | −0.47 | 0.30 | −0.33 | 0.41 | −0.42 | 0.12 |
Flexibility (cm) | 0.29 | −0.42 | −0.09 | −0.32 | −0.16 | 0.05 |
Right quadriceps at 60 degrees/s (Nm/kg) | 0.50 | 0.40 | 0.21 | −0.09 | 0.22 | −0.57 |
Left quadriceps At 60 degrees/s (Nm/kg) | 0.37 | 0.49 | −0.05 | 0.29 | 0.11 | 0.03 |
Right hamstring at 60 degrees/s (Nm/kg) | 0.37 | 0.18 | 0.14 | −0.46 | 0.02 | 0.46 |
Left hamstring at 60 degrees/s (Nm/kg) | 0.36 | 0.59 | 0.02 | −0.08 | 0.07 | −0.17 |
RT (min) | 0.62 * | 0.12 | 0.43 | 0.40 | 0.52 * | 0.21 |
VO2max (mL/kg/min) | 0.36 | −0.44 | 0.32 | −0.12 | 0.15 | 0.09 |
SJ (cm) | −0.08 | 0.25 | −0.42 | 0.37 | −0.24 | 0.19 |
CMJ (cm) | −0.09 | 0.20 | −0.36 | 0.30 | −0.17 | 0.23 |
Relative right handgrip strength (kg/BMI) | 0.63 ** | 0.28 | 0.70 ** | 0.23 | 0.62* | −0.01 |
Relative left handgrip strength (kg/BMI) | 0.61 * | 0.07 | 0.65 ** | −0.07 | 0.56 * | −0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parpa, K.; Michaelides, M.; Petrov, D.; Kyrillou, C.; Paludo, A.C. Relationship between Physical Performance, Anthropometric Measurements and Stroke Velocity in Youth Tennis Players. Sports 2023, 11, 7. https://doi.org/10.3390/sports11010007
Parpa K, Michaelides M, Petrov D, Kyrillou C, Paludo AC. Relationship between Physical Performance, Anthropometric Measurements and Stroke Velocity in Youth Tennis Players. Sports. 2023; 11(1):7. https://doi.org/10.3390/sports11010007
Chicago/Turabian StyleParpa, Koulla, Marcos Michaelides, Dennis Petrov, Christos Kyrillou, and Ana C. Paludo. 2023. "Relationship between Physical Performance, Anthropometric Measurements and Stroke Velocity in Youth Tennis Players" Sports 11, no. 1: 7. https://doi.org/10.3390/sports11010007
APA StyleParpa, K., Michaelides, M., Petrov, D., Kyrillou, C., & Paludo, A. C. (2023). Relationship between Physical Performance, Anthropometric Measurements and Stroke Velocity in Youth Tennis Players. Sports, 11(1), 7. https://doi.org/10.3390/sports11010007