Motion Analysis of Core Stabilization Exercise in Women: Kinematics and Electromyographic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Core Stabilization Exercise
2.3. Kinetics and Electromyographic Analysis
2.4. Statistical Analysis
3. Results
3.1. Muscle Activity during Side Split Exercise
3.2. Kinematic Analysis of the Side Split Exercise
3.3. Correlation between Muscle Activation and Kinematic Data
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gombatto, S.P.; Brock, T.; DeLork, A.; Jones, G.; Madden, E.; Rinere, C. Lumbar spine kinematics during walking in people with and people without low back pain. Gait Posture 2015, 42, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [Green Version]
- Lemeunier, N.; Leboeuf-Yde, C.; Gagey, O. The natural course of low back pain: A systematic critical literature review. Chiropr Man Therap. 2012, 20, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louw, Q.A.; Morris, L.D.; Grimmer-Somers, K. The prevalence of low back pain in Africa: A systematic review. BMC Musculoskelet Disord 2007, 8, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsudaira, K.; Konishi, H.; Miyoshi, K.; Isomura, T.; Takeshita, K.; Hara, N.; Yamada, K.; Machida, H. Potential risk factors for new onset of back pain disability in Japanese workers: Findings from the Japan epidemiological research of occupation-related back pain study. Spine 2012, 37, 1324–1333. [Google Scholar] [CrossRef]
- Picavet, H.S.; Schouten, J.S. Musculoskeletal pain in the Netherlands: Prevalences, consequences and risk groups, the DMC(3)-study. Pain 2003, 102, 167–178. [Google Scholar] [CrossRef]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Hoy, D.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Bain, C.; Williams, G.; Smith, E.; Vos, T.; Barendregt, J.; et al. The global burden of low back pain: Estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014, 73, 968–974. [Google Scholar] [CrossRef] [Green Version]
- Treede, R.D.; Jensen, T.S.; Campbell, J.N.; Cruccu, G.; Dostrovsky, J.O.; Griffin, J.W.; Hansson, P.; Hughes, R.; Nurmikko, T.; Serra, J. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 2008, 70, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Hartvigsen, J.; Natvig, B.; Ferreira, M. Is it all about a pain in the back? Best Pract. Res. Clin. Rheumatol. 2013, 27, 613–623. [Google Scholar] [CrossRef]
- Baron, R.; Binder, A.; Attal, N.; Casale, R.; Dickenson, A.H.; Treede, R.D. Neuropathic low back pain in clinical practice. Eur. J. Pain 2016, 20, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Illés, S.T. Low back pain: When and what to do. Orv. Hetil. 2015, 156, 1315–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manniche, C.; Hesselsøe, G.; Bentzen, L.; Christensen, I.; Lundberg, E. Clinical trial of intensive muscle training for chronic low back pain. Lancet 1988, 2, 1473–1476. [Google Scholar] [CrossRef] [PubMed]
- Searle, A.; Spink, M.; Ho, A.; Chuter, V. Exercise interventions for the treatment of chronic low back pain: A systematic review and meta-analysis of randomised controlled trials. Clin. Rehabil. 2015, 29, 1155–1167. [Google Scholar] [CrossRef]
- O’Sullivan, P.B.; Phyty, G.D.; Twomey, L.T.; Allison, G.T. Evaluation of specific stabilizing exercise in the treatment of chronic low back pain with radiologic diagnosis of spondylolysis or spondylolisthesis. Spine 1997, 22, 2959–2967. [Google Scholar] [CrossRef] [PubMed]
- Cynn, H.S.; Oh, J.S.; Kwon, O.Y.; Yi, C.H. Effects of lumbar stabilization using a pressure biofeedback unit on muscle activity and lateral pelvic tilt during hip abduction in sidelying. Arch Phys. Med. Rehabil 2006, 87, 1454–1458. [Google Scholar] [CrossRef]
- Oh, J.S.; Cynn, H.S.; Won, J.H.; Kwon, O.Y.; Yi, C.H. Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor muscle activity and amount of anterior pelvic tilt. J. Orthop Sports Phys. Ther. 2007, 37, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Chance-Larsen, K.; Littlewood, C.; Garth, A. Prone hip extension with lower abdominal hollowing improves the relative timing of gluteus maximus activation in relation to biceps femoris. Man Ther. 2010, 15, 61–65. [Google Scholar] [CrossRef]
- Chevidikunnan, M.F.; Al Saif, A.; Gaowgzeh, R.A.; Mamdouh, K.A. Effectiveness of core muscle strengthening for improving pain and dynamic balance among female patients with patellofemoral pain syndrome. J. Phys. Ther. Sci. 2016, 28, 1518–1523. [Google Scholar] [CrossRef] [Green Version]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in neuromuscular control of the trunk predict knee injury risk: A prospective biomechanical-epidemiologic study. Am. J. Sports Med. 2007, 35, 1123–1130. [Google Scholar] [CrossRef]
- Panjabi, M.M. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 1992, 5, 383-383. [Google Scholar] [CrossRef]
- Panjabi, M.M. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J. Spinal Disord. 1992, 5, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Reeves, N.P.; Narendra, K.S.; Cholewicki, J. Spine stability: The six blind men and the elephant. Clin. Biomech. 2007, 22, 266–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorstensson, A.; Carlson, H.; Zomlefer, M.R.; Nilsson, J. Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiol. Scand. 1982, 116, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Comerford, M.J.; Mottram, S.L. Movement and stability dysfunction--contemporary developments. Man Ther. 2001, 6, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Comerford, M.J.; Mottram, S.L. Functional stability re-training: Principles and strategies for managing mechanical dysfunction. Man Ther. 2001, 6, 3–14. [Google Scholar] [CrossRef]
- Hodges, P.W.; Richardson, C.A. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine 1996, 21, 2640–2650. [Google Scholar] [CrossRef]
- Hodges, P.W.; Richardson, C.A. Transversus abdominis and the superficial abdominal muscles are controlled independently in a postural task. Neurosci. Lett. 1999, 265, 91–94. [Google Scholar] [CrossRef]
- Hodges, P.W.; Richardson, C.A. Contraction of the abdominal muscles associated with movement of the lower limb. Phys. Ther. 1997, 77, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Kong, M.H.; Hymanson, H.J.; Song, K.Y.; Chin, D.K.; Cho, Y.E.; Yoon, D.H.; Wang, J.C. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit. J. Neurosurg. Spine 2009, 10, 357–365. [Google Scholar] [CrossRef]
- Stokes, I.A.; Gardner-Morse, M.G.; Henry, S.M. Abdominal muscle activation increases lumbar spinal stability: Analysis of contributions of different muscle groups. Clin. Biomech. 2011, 26, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Larivière, C.; Bilodeau, M.; Forget, R.; Vadeboncoeur, R.; Mecheri, H. Poor back muscle endurance is related to pain catastrophizing in patients with chronic low back pain. Spine 2010, 35, E1178–E1186. [Google Scholar] [CrossRef]
- Brumagne, S.; Cordo, P.; Lysens, R.; Verschueren, S.; Swinnen, S. The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine 2000, 25, 989–994. [Google Scholar] [CrossRef] [PubMed]
- França, F.R.; Burke, T.N.; Hanada, E.S.; Marques, A.P. Segmental stabilization and muscular strengthening in chronic low back pain: A comparative study. Clinics 2010, 65, 1013–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, P.W.; Murphy, B.A. Core stability exercises on and off a swiss ball. Arch Phys. Med. Rehabil. 2005, 86, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, E.; van der Beek, A.; Twisk, J.; Bouter, L.; Bahr, R.; van Mechelen, W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: A prospective controlled trial. Am. J. Sports Med. 2004, 32, 1385–1393. [Google Scholar] [CrossRef]
- Cosio-Lima, L.M.; Reynolds, K.L.; Winter, C.; Paolone, V.; Jones, M.T. Effects of physioball and conventional floor exercises on early phase adaptations in back and abdominal core stability and balance in women. J. Strength Cond. Res. 2003, 17, 721–725. [Google Scholar] [CrossRef]
- Desai, I.; Marshall, P.W. Acute effect of labile surfaces during core stability exercises in people with and without low back pain. J. Electromyogr. Kinesiol. 2010, 20, 1155–1162. [Google Scholar] [CrossRef]
- Imai, A.; Kaneoka, K.; Okubo, Y.; Shiina, I.; Tatsumura, M.; Izumi, S.; Shiraki, H. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J. Orthop. Sports Phys. Ther. 2010, 40, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Tankisi, H.; Burke, D.; Cui, L.; de Carvalho, M.; Kuwabara, S.; Nandedkar, S.D.; Rutkove, S.; Stalberg, E.; van Putten, M.; Fuglsang-Frederiksen, A. Standards of instrumentation of EMG. Clin. Neurophysiol. 2020, 131, 243–258. [Google Scholar] [CrossRef]
- Lee, K. The relationship of trunk muscle activation and core stability: A biomechanical analysis of pilates-based stabilization exercise. Int. J. Environ. Res. Public Health 2021, 18, 12804. [Google Scholar] [CrossRef] [PubMed]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Dancey, C.P.; Reidy, J. Statistics Without Maths for Psychology; Pearson: London, UK, 2017. [Google Scholar]
- Bergmark, A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop. Scand. Suppl 1989, 230, 1–54. [Google Scholar] [CrossRef] [PubMed]
- Pulkovski, N.; Mannion, A.F.; Caporaso, F.; Toma, V.; Gubler, D.; Helbling, D.; Sprott, H. Ultrasound assessment of transversus abdominis muscle contraction ratio during abdominal hollowing: A useful tool to distinguish between patients with chronic low back pain and healthy controls? Eur. Spine J. 2012, 21, S750–S759. [Google Scholar] [CrossRef] [Green Version]
- Atkins, S.J.; Bentley, I.; Brooks, D.; Burrows, M.P.; Hurst, H.T.; Sinclair, J.K. Electromyographic response of global abdominal stabilizers in response to stable- and unstable-base isometric exercise. J. Strength Cond. Res. 2015, 29, 1609–1615. [Google Scholar] [CrossRef]
- Panhan, A.C.; Gonçalves, M.; Eltz, G.D.; Villalba, M.M.; Cardozo, A.C.; Bérzin, F. Core muscle activation during Pilates exercises on the Wunda chair. J. Bodyw. Mov. Ther. 2021, 25, 165–169. [Google Scholar] [CrossRef]
- Panhan, A.C.; Gonçalves, M.; Eltz, G.D.; Villalba, M.M.; Cardozo, A.C.; Bérzin, F. Electromyographic evaluation of trunk core muscles during Pilates exercise on different supporting bases. J. Bodyw. Mov. Ther. 2019, 23, 855–859. [Google Scholar] [CrossRef]
- Barbosa, A.C.; Vieira, E.R.; Silva, A.F.; Coelho, A.C.; Martins, F.M.; Fonseca, D.S.; Barbosa, M.A.; Bordachar, D. Pilates experience vs. muscle activation during abdominal drawing-in maneuver. J. Bodyw. Mov. Ther. 2018, 22, 467–470. [Google Scholar] [CrossRef]
- Gala-Alarcón, P.; Calvo-Lobo, C.; Serrano-Imedio, A.; Garrido-Marín, A.; Martín-Casas, P.; Plaza-Manzano, G. Ultrasound evaluation of the abdominal wall and lumbar multifidus muscles in participants who practice pilates: A 1-year follow-up case series. J. Manip. Physiol. Ther. 2018, 41, 434–444. [Google Scholar] [CrossRef]
- Alves, M.C.; de Souza Neto, R.J.; Barbosa, R.I.; Marcolino, A.M.; Kuriki, H.U. Effects of a Pilates protocol in individuals with non-specific low back pain compared with healthy individuals: Clinical and electromyographic analysis. Clin. Biomech. 2020, 72, 172–178. [Google Scholar] [CrossRef]
Mean (±SD) | |
---|---|
Age (years) | 22.13 (±1.36) |
Height (cm) | 162.69 (±5.45) |
Mass (kg) | 53.25 (±7.22) |
Body mass index (kg/m2 | 20.03 (±1.57) |
Light | Heavy | t | p | ||
---|---|---|---|---|---|
Gluteus medius | Right (%) | 7.97 ± 4.37 | 27.7 ± 18.58 | 3.58 | 0.002 |
Left (%) | 8.71 ± 4.11 | 30.12 ± 13.68 | 5.192 | 0 | |
Total (%) | 8.34 ± 2.95 | 28.91 ± 13.46 | 5.172 | 0 | |
Adductor longus | Right (%) | 27.88 ± 10.82 | 4.44 ± 3.97 | 7.049 | 0 |
Left (%) | 29.93 ± 12.33 | 5.23 ± 3.03 | 6.74 | 0 | |
Total (%) | 28.9 ± 10.46 | 4.83 ± 3.03 | 7.659 | 0 | |
Abdominal muscle | IO (%) | 28.44 ± 17.71 | 33.42 ± 13.95 | 0.765 | 0.452 |
RA (%) | 10.07 ± 12.45 | 9.67 ± 10.06 | 0.087 | 0.932 | |
t | 5.491 | 6.006 | |||
p | 0 | 0 | |||
IO/RA (ratio) | 10.9 ± 14.19 | 13.74 ± 16.24 | 0.456 | 0.653 | |
Low back muscle | MF (%) | 21.31 ± 16.67 | 19.35 ± 6.94 | 0.376 | 0.71 |
IL (%) | 8.58 ± 5.36 | 7.56 ± 3.84 | 0.534 | 0.599 | |
t | 2.404 | 5.146 | |||
p | 0.035 | 0 | |||
MF/IL (ratio) | 3.35 ± 3.07 | 3.35 ± 2.27 | 0.007 | 0.994 |
Variables | Light | Heavy | t | p |
---|---|---|---|---|
Hip Abduction of Anchored leg (degree) | 15.42 ± 5.22 | 12.39 ± 3.32 | 5.672 | 0.000 |
Hip Abduction of Sliding Leg (degree) | 13.25 ± 4.41 | 9.76 ± 2.90 | 6.335 | 0.000 |
Hip joint Symmetry | 1.20 ± 0.18 | 1.45 ± 0.43 | 4.811 | 0.000 |
Trunk Stability (mm) | 2518.46 ± 890.05 | 1869.44 ± 647.20 | 8.331 | 0.000 |
Pelvic Stability (mm) | 2515.28 ± 898.80 | 1828.94 ± 609.87 | 8.398 | 0.000 |
Hip Joint Symmetry | Trunk Stability | Pelvic Stability | ||
---|---|---|---|---|
Heavy | IO | −0.527 ∗ | −0.776 ∗ | −0.802 ∗ |
RA | −0.402 ∗ | −0.416 ∗ | −0.443 ∗ | |
IO/RA | −0.201 | −0.722 ∗ | −0.754 ∗ | |
MU | −0.459 ∗ | −0.558 ∗ | −0.507 ∗ | |
IL | 0.121 | 0.232 | 0.301 ∗ | |
MU/IL | −0.462 ∗ | −0.653 ∗ | −0.627 ∗ | |
Light | IO | −0.343 | −0.727 ∗ | −0.792 ∗ |
RA | −0.197 | −0.608 ∗ | −0.543 ∗ | |
IO/RA | −0.124 | −0.663 ∗ | −0.679 ∗ | |
MU | −0.294 | −0.204 | −0.305 | |
IL | −0.238 | −0.168 | −0.232 | |
MU/IL | −0.258 | −0.297 | −0.324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K. Motion Analysis of Core Stabilization Exercise in Women: Kinematics and Electromyographic Analysis. Sports 2023, 11, 66. https://doi.org/10.3390/sports11030066
Lee K. Motion Analysis of Core Stabilization Exercise in Women: Kinematics and Electromyographic Analysis. Sports. 2023; 11(3):66. https://doi.org/10.3390/sports11030066
Chicago/Turabian StyleLee, Kyeongjin. 2023. "Motion Analysis of Core Stabilization Exercise in Women: Kinematics and Electromyographic Analysis" Sports 11, no. 3: 66. https://doi.org/10.3390/sports11030066
APA StyleLee, K. (2023). Motion Analysis of Core Stabilization Exercise in Women: Kinematics and Electromyographic Analysis. Sports, 11(3), 66. https://doi.org/10.3390/sports11030066