How Does Instability Affect Bench Press Performance? Acute Effect Analysis with Different Loads in Trained and Untrained Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants/Sample
2.3. Procedures
2.3.1. Incremental Load Test
2.3.2. Experimental Protocol
2.3.3. Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Low Loads (40% of 1RM)
3.2. Medium Loads (60% of 1RM)
3.3. High Loads (80% of 1RM)
4. Discussion
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, K.; Behm, D.G. Trunk Muscle Activity Increases with Unstable Squat Movements. Can. J. Appl. Physiol. 2005, 30, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Anderson, K.G. The Role of Instability with Resistance Training. J. Strength Cond. Res. 2006, 20, 716. [Google Scholar] [CrossRef]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. The Use of Instability to Train the Core Musculature. Appl. Physiol. Nutr. Metab. 2010, 35, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Ignjatovic, A.M.; Radovanovic, D.S.; Kocić, J. Effects of Eight Weeks of Bench Press and Squat Power Training on Stable and Unstable Surfaces on 1RM and Peak Power in Different Testing Conditions. Isokinet. Exerc. Sci. 2019, 27, 203–212. [Google Scholar] [CrossRef]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. Canadian Society for Exercise Physiology Position Stand: The Use of Instability to Train the Core in Athletic and Nonathletic Conditioning. Appl. Physiol. Nutr. Metab. 2010, 35, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Kohler, J.M.; Flanagan, S.P.; Whiting, W.C. Muscle Activation Patterns While Lifting Stable and Unstable Loads on Stable and Unstable Surfaces. J. Strength Cond. Res. 2010, 24, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Lozano, J.M.; Muyor, J.M. Core Muscle Activity during Physical Fitness Exercises: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4306. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Andersen, V.; Behm, D.G.; Cumming, K.T.; Prieske, O.; Solstad, T.E.J.; Shaw, M.; Stien, N. The Role of Trunk Training for Physical Fitness and Sport-Specific Performance. Protocol for a Meta-Analysis. Front. Sport. Act Living 2021, 3, 625098. [Google Scholar] [CrossRef] [PubMed]
- Chulvi-Medrano, I.; García-Massó, X.; Colado, J.C.; Pablos, C.; de Moraes, J.A.; Fuster, M.A. Deadlift Muscle Force and Activation under Stable and Unstable Conditions. J. Strength Cond. Res. 2010, 24, 2723–2730. [Google Scholar] [CrossRef] [PubMed]
- O’Meara, S.; Lostroscio, K.; Quiocho, L.; Joshi, S.; Vetter, K. Effects of Stable and Unstable Surfaces on Cable-Based Resistive Exercises. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Willardson, J.M. The effectiveness of resistance exercises performed on unstable equipment. Strength Cond. J. 2004, 26, 70–74. [Google Scholar] [CrossRef]
- Snarr, R.L.; Esco, M.R. Electromyographic Comparison of Traditional and Suspension Push-Ups. J. Hum. Kinet. 2013, 39, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeterbakken, A.H.; Fimland, M.S. Muscle Activity of the Core during Bilateral, Unilateral, Seated and Standing Resistance Exercise. Eur. J. Appl. Physiol. 2012, 112, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.M.; Vigotsky, A.D.; Oppenheimer, N.E.; Feser, E.H. Differences in Unilateral Chest Press Muscle Activation and Kinematics on a Stable versus Unstable Surface While Holding One versus Two Dumbbells. PeerJ 2015, 3, e1365. [Google Scholar] [CrossRef] [Green Version]
- McGill, S.M.; Cannon, J.; Andersen, J.T. Analysis of Pushing Exercises; Muscle Activity and Spine Load While Contrasting Techniques on Stable Surfaces with a Labile Suspension Strap Training System. J. Strength Cond. Res. 2014, 28, 105–116. [Google Scholar] [CrossRef]
- McBride, J.M.; Cormie, P.; Deane, R. Isometric Squat Force Output and Muscle Activity in Stable and Unstable Conditions. J. Strength Cond. Res. 2006, 20, 915–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehman, G.J.; MacMillan, B.; MacIntyre, I.; Chivers, M.; Fluter, M. Shoulder Muscle EMG Activity during Push up Variations on and off a Swiss Ball. Dyn. Med. 2006, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Anderson, K.G.; Curnew, R.S. Muscle Force and Activation under Stable and Unstable Conditions. J. Strength Cond. Res. 2002, 16, 416–422. [Google Scholar]
- Behm, D.G.; Leonard, A.M.; Young, W.B.; Bonsey, W.A.C.; MacKinnon, S.N. Trunk Muscle Electromyographic Activity with Unstable and Unilateral Exercises. J. Strength Cond. Res. 2005, 19, 193–201. [Google Scholar] [CrossRef]
- Arriscado Alsina, D.; Martínez, J.A. Muscular Strength Training in Young Football Players. J. Sport Health Res. 2017, 9, 329–338. [Google Scholar]
- Billich, R.; Stvrtna, J.; Jelen, K. Optimal Velocity to Achieve Maximum Power. KInanthropologica 2014, 50, 37–46. [Google Scholar] [CrossRef]
- Dallas, G.; Kirialanis, P.; Mellos, V. The Acute Effect of Whole Body Vibration Training on Flexibility and Explosive Strenght of Young Gymnasts. Biol. Sport 2014, 31, 233–237. [Google Scholar] [CrossRef]
- Górski, M.; Starczewski, M.; Pastuszak, A.; Mazur-Różycka, J.; Gajewski, J.; Buśko, K. Changes of Strength and Maximum Power of Lower Extremities in Adolescent Handball Players during a Two-Year Training Cycle. J. Hum. Kinet 2018, 63, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.A.; Nimphius, S.; Kobal, R.; Kitamura, K.; Turisco, L.A.L.; Orsi, R.C.; Cal Abad, C.C.; Loturco, I. Relationship between Change of Direction, Speed and Power in Male and Female National Olympic Team Handball Athletes. J. Strength Cond. Res. 2018, 63, 1. [Google Scholar] [CrossRef]
- Spieszny, M.; Zubik, M. Modification of Strength Training Programs in Handball Players and Its Influence on Power during the Competitive Period. J. Hum. Kinet. 2018, 63, 149–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannicandro, I.; Cofano, G.; Rosa, R.A.; Piccinno, A. Balance Training Exercises Decrease Lower-Limb Strength Asymmetry in Young Tennis Players. J. Sport. Sci. Med. 2014, 13, 397–402. [Google Scholar]
- Sato, K.; Heise, G.D. Influence of Weight Distribution Asymmetry on the Biomechanics of a Barbell Back Squat. J. Strength Cond. Res. 2012, 26, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Eagle, S.R.; Keenan, K.A.; Connaboy, C.; Wohleber, M.; Simonson, A.; Nindl, B.C. Bilateral Quadriceps Strength Asymmetry Is Associated with Previous Knee Injury in Military Special Tactics Operators. J. Strength Cond. Res. 2019, 33, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Heishman, A.; Daub, B.; Miller, R.; Brown, B.; Freitas, E.; Bemben, M. Countermovement Jump Inter-Limb Asymmetries in Collegiate Basketball Players. Sports 2019, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Cowley, P.; Swensen, T.; Sforzo, G. Efficacy of Instability Resistance Training. Int. J. Sport Med. 2007, 28, 829–835. [Google Scholar] [CrossRef] [Green Version]
- Marquina Nieto, M.; Rivilla-García, J.; de la Rubia, A.; Lorenzo-Calvo, J. Assessment of the Speed and Power of Push-Ups Performed on Surfaces with Different Degrees of Instability. Res. Public Health 2022, 19, 13739. [Google Scholar] [CrossRef]
- Cressey, E.M.; West, C.A.; Tiberio, D.P.; Kraemer, W.J.; Maresh, C.M. The Effects of Ten Weeks of Lower-Body Unstable Surface Training on Markers of Athletic Performance. J. Strength Cond. Res. 2007, 21, 561. [Google Scholar] [CrossRef] [PubMed]
- Stastny, P.; Gołaś, A.; Blazek, D.; Maszczyk, A.; Wilk, M.; Pietraszewski, P.; Petr, M.; Uhlir, P.; Zając, A. A Systematic Review of Surface Electromyography Analyses of the Bench Press Movement Task. PLoS ONE 2017, 12, e0171632. [Google Scholar] [CrossRef] [Green Version]
- Saeterbakken, A.H.; Stien, N.; Pedersen, H.; Solstad, T.E.J.; Cumming, K.T.; Andersen, V. The Effect of Grip Width on Muscle Strength and Electromyographic Activity in Bench Press among Novice-and Resistance-Trained Men. Int. J. Environ. Res. Public Health 2021, 18, 6444. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ridao, D.; Antequera-Vique, J.A.; Martín-Fuentes, I.; Muyor, J.M. Effect of Five Bench Inclinations on the Electromyographic Activity of the Pectoralis Major, Anterior Deltoid, and Triceps Brachii during the Bench Press Exercise. Int. J. Environ. Res. Public Health 2020, 17, 7339. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.; Rayner, M.; Mamdouh Ibrahim Mahmoud, M.; Behm, D.G. Push-Ups vs. Bench Press Differences in Repetitions and Muscle Activation between Sexes. J. Sport. Sci. Med. 2020, 19, 289–297. [Google Scholar]
- Jarosz, J.; Gołaś, A.; Krzysztofik, M.; Matykiewicz, P.; Strońska, K.; Zajac, A.; Maszczyk, A. Changes in Muscle Pattern Activity during the Asymmetric Flat Bench Press (Offset Training). Int. J. Environ. Res. Public Health 2020, 17, 3912. [Google Scholar] [CrossRef]
- Marquina, M.; Lorenzo-Calvo, J.; Rivilla-García, J.; García-Aliaga, A.; Refoyo Román, I. Effects on Strength, Power and Speed Execution Using Exercise Balls, Semi-Sphere Balance Balls and Suspension Training Devices: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1026. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Differences in the Load-Velocity Profile Between 4 Bench-Press Variants. Int. J. Sport Physiol. Perform. 2018, 13, 326–331. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sanchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sport Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; García-Ramos, A.; Jiménez-Reyes, P. Load–Velocity Profiling in the Military Press Exercise: Effects of Gender and Training. Int. J. Sport Sci. Coach. 2017, 13, 743–750. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; González-Badillo, J.J. Importance of the Propulsive Phase in Strength Assessment. Train. Test. 2010, 123, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Erdfelder, E.; Faul, F.; Buchner, A. GPOWER: A General Power Analysis Program. Behav. Res. Methods Instrum. Comput. 1996, 28, 1–11. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Willardson, J.M. A Brief Review: How Much Rest between Sets? Strength Cond. J. 2008, 30, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Espinoza Acuña, G.; Sánchez Ureña, B.; Rojas-Valverde, D.; Gutiérrez Vargas, J.C.; Cordero Duarte, K.; Blanco Romero, L. Efecto Agudo Del Estiramiento Estático y Dinámico Sobre El Rendimiento y La Percepción de Esfuerzo En Ejercicio Contrarresistencia. MHSalud Rev. En Cienc. Del Mov. Hum. Y Salud 2020, 18, 1–15. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities during the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Morse, D.T. Minsize2: A Computer Program for Determining Effect Size and Minimum Sample Size for Statistical Significance for Univariate, Multivariate, and Nonparametric Tests. Educ. Psychol. Meas. 1999, 59, 518–531. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Zemkova, E.; Jelen, M.; Radman, I.; Svilar, L.; Hamar, D. L’effetto Delle Condizioni Di Sollevamento Stabili e Instabili Sulla Forza Muscolare e Sul Tasso Di Affaticamento Durante Esercizi Di Resistenza. Med. Dello Sport 2017, 70, 36–49. [Google Scholar] [CrossRef]
- Zemková, E.; Jeleň, M.; Kováčiková, Z.; Ollé, G.; Vilman, T.; Hamar, D. Power Outputs in the Concentric Phase of Resistance Exercises Performed in the Interval Mode on Stable and Unstable Surfaces. J. Strength Cond. Res. 2012, 26, 3230–3236. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; McCaulley, G.O.; Cormie, P.; Cavill, M.J.; McBride, J.M. Trunk Muscle Activity during Stability Ball and Free Weight Exercises. J. Strength Cond. Res. 2008, 22, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshida, S.; Urabe, Y.; Miyashita, K.; Iwai, K.; Kagimori, A. Muscular Outputs during Dynamic Bench Press under Stable versus Unstable Conditions. J. Strength Cond. Res. 2008, 22, 1584–1588. [Google Scholar] [CrossRef]
- Goodman, C.A.; Pearce, A.J.; Nicholes, C.J.; Gatt, B.M.; Fairweather, I.H. No Difference in 1RM Strength and Muscle Activation during the Barbell Chest Press on a Stable and Unstable Surface. J. Strength Cond. Res. 2008, 22, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Saeterbakken, A.H.; Solstad, T.E.J.; Behm, D.G.; Stien, N.; Shaw, M.P.; Pedersen, H.; Andersen, V. Muscle Activity in Asymmetric Bench Press among Resistance-Trained Individuals. Eur. J. Appl. Physiol. 2020, 120, 2517–2524. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.H.; Jorung Solstad, T.E.; Stien, N.; Shaw, M.P.; Pedersen, H.; Andersen, V. Muscle Activation with Swinging Loads in Bench Press. PLoS ONE 2020, 15, e0239202. [Google Scholar] [CrossRef] [PubMed]
- González Badillo, J.J.; Gorostiaga Ayestarán, E. Fundamentos Del Entrenamiento de La Fuerza. Aplicación al Alto Rendimiento Deportivo; INDE: Barcelona, Spain, 1995; ISBN 9788487330384. [Google Scholar]
- Zemková, E.; Jeleň, M.; Cepková, A.; Uvaček, M. There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions. Appl. Sci. 2021, 11, 3401. [Google Scholar] [CrossRef]
- Adkin, A.L.; Frank, J.S.; Carpenter, M.G.; Peysar, G.W. Fear of Falling Modifies Anticipatory Postural Control. Exp. Brain Res. 2002, 143, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Kornecki, S.; Zschorlich, V. The Nature of the Stabilizing Functions of Skeletal Muscles. J. Biomech. 1994, 27, 215–225. [Google Scholar] [CrossRef]
- Behm, D.G. Neuromuscular Implications and Aplications of Resistance Training. J. Strength Cond. Res. 1995, 9, 264–274. [Google Scholar]
- Tan, B. Variables to Optimize Maximum Strength in Men: A Review. J. Strength Cond. Res. 1999, 13, 289–304. [Google Scholar] [CrossRef]
- Chulvi-Medrano, I.; Masià-Tortosa, L. Entrenamiento de Inestabilidad. Bases Para El Correcto Entrenamiento. Enfoques Sobre La Columna Lumbar; Ediciones Cardeñoso: Vigo, Spain, 2014. [Google Scholar]
- Maté-Muñoz, J.L.; Antón, A.J.M.; Jiménez, P.J.; Garnacho-Castaño, M.V. Effects of Instability versus Traditional Resistance Training on Strength, Power and Velocity in Untrained Men. J. Sport. Sci. Med. 2014, 13, 460–468. [Google Scholar]
- Sparkes, R.; Behm, D.G. Training Adaptations Associated with an 8-Week Instability Resistance Training Program with Recreationally Active Individuals. J. Strength Cond. Res. 2010, 24, 1931–1941. [Google Scholar] [CrossRef] [PubMed]
Group | Age (Years) | Body Mass (kg) | Body Height (cm) |
---|---|---|---|
Untrained (n = 15) | 26.73 ± 4.31 | 77.80 ± 4.44 | 176.40 ± 2.80 |
Trained (n = 15) | 27.54 ± 3.57 | 81.49 ± 9.67 | 179.58 ± 8.95 |
Untrained MPS | Trained MPS | All Participants | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | |||
LL | UP | LL | UP | |||||||||||||
Stable (SB) | 15 | 1.16 | 0.11 | 1.11 | 1.22 | 15 | 1.24 | 0.10 | 1.18 | 1.30 | 6.45% | 1.20 | 0.11 | |||
Asymmetric (AB) | 15 | 1.11 | 0.07 | 4.31% | 1.06 | 1.16 | 15 | 1.15 | 0.11 | 7.26% | 1.10 | 1.20 | 3.48% | 1.13 a | 0.10 | 5.83% |
Unstable Load (UB) | 15 | 1.10 | 0.11 | 5.17% | 1.04 | 1.17 | 15 | 1.11 | 0.13 | 10.48% | 1.05 | 1.18 | 0.90% | 1.11 a | 0.12 | 7.50% |
Fitball (FB) | 15 | 1.05 | 0.10 | 9.48% | 0.99 | 1.11 | 15 | 1.06 | 0.13 | 14.52% | 1.00 | 1.12 | 0.94% | 1.05 a | 0.11 | 12.50% |
Bosu (BB) | 15 | 1.03 | 0.08 | 11.21% | 0.96 | 1.10 | 15 | 1.04 | 0.17 | 16.13% | 1.00 | 1.11 | 0.96% | 1.03 ab | 0.11 | 14.17% |
Untrained MS | Trained MS | All Participants | ||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | |||
LL | UP | LL | UP | |||||||||||||
Stable (SB) | 15 | 1.73 | 0.11 | 1.67 | 1.84 | 15 | 1.81 | 0.15 | 1.74 | 1.89 | 4.42% | 1.77 | 0.14 | |||
Asymmetric (AB) | 15 | 1.70 | 0.15 | 1.73% | 1.66 | 1.80 | 15 | 1.70 | 0.17 | 6.08% | 1.61 | 1.78 | 0.00% | 1.70 | 0.16 | 3.95% |
Unstable Load (UB) | 15 | 1.70 | 0.08 | 1.73% | 1.63 | 1.77 | 15 | 1.70 | 0.16 | 6.08% | 1.63 | 1.77 | 0.00% | 1.70 | 0.13 | 3.95% |
Fitball (FB) | 15 | 1.61 | 0.12 | 6.94% | 1.55 | 1.67 | 15 | 1.69 | 0.11 | 6.63% | 1.63 | 1.75 | 4.73% | 1.65 a | 0.12 | 6.78% |
Bosu (BB) | 15 | 1.55 | 0.15 | 10.40% | 1.46 | 1.65 | 15 | 1.66 | 0.22 | 8.29% | 1.57 | 1.76 | 6.63% | 1.61 a | 0.19 | 9.04% |
Untrained PW | Trained PW | All Participants | ||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | |||
LL | UP | LL | UP | |||||||||||||
Stable (SB) | 15 | 388.93 | 67.68 | 354.36 | 423.51 | 15 | 444.40 | 53.90 | 421.51 | 467.29 | 12.48% | 415.50 | 51.69 | |||
Asymmetric (AB) | 15 | 386.60 | 28.92 | 0.60% | 363.71 | 409.49 | 15 | 421.87 | 79.67 | 5.07% | 384.59 | 459.15 | 8.36% | 399.36 | 72.94 | 3.88% |
Unstable Load (UB) | 15 | 376.87 | 59.91 | 3.10% | 339.59 | 414.15 | 15 | 407.60 | 62.96 | 8.28% | 373.03 | 442.17 | 7.54% | 398.27 | 64.93 | 4.15% |
Fitball (FB) | 15 | 365.07 | 65.56 | 6.13% | 330.37 | 399.76 | 15 | 393.20 | 65.64 | 11.52% | 358.51 | 427.90 | 7.15% | 379.13 a | 66.03 | 8.75% |
Bosu (BB) | 15 | 335.13 | 45.04 | 13.83% | 310.77 | 359.50 | 15 | 366.40 | 47.07 | 17.55% | 342.04 | 390.76 | 8.53% | 350.77 abc | 47.98 | 15.58% |
Untrained MPS | Trained MPS | All Participants | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | ||||
LL | UP | LL | UP | ||||||||||||||
Stable (SB) | 15 | 0.85 | 0.10 | 0.80 | 0.95 | 15 | 0.88 | 0.09 | 0.83 | 0.93 | 3.41% | 0.87 | 0.09 | ||||
Asymmetric (AB) | 15 | 0.76 | 0.06 | 10.59% | 0.72 | 0.81 | 15 | 0.85 | 0.09 | 3.41% | 0.81 | 0.89 | 10.59% | 0.80 | 0.09 | 8.05% | |
Unstable Load (UB) | 15 | 0.76 | 0.08 | 10.59% | 0.72 | 0.80 | 15 | 0.81 | 0.09 | 7.95% | 0.76 | 0.85 | 6.17% | 0.79 a | 0.09 | 9.20% | |
Fitball (FB) | 15 | 0.73 | 0.08 | 14.12% | 0.69 | 0.77 | 15 | 0.73 | 0.08 | 17.05% | 0.69 | 0.77 | 0.00% | 0.73 ab | 0.08 | 16.09% | |
Bosu (BB) | 15 | 0.69 | 0.09 | 18.82% | 0.65 | 0.75 | 15 | 0.70 | 0.10 | 20.45% | 0.64 | 0.74 | 1.43% | 0.69 abd | 0.10 | 20.69% | |
Untrained MS | Trained MS | All Participants | |||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | ||||
LL | UP | LL | UP | ||||||||||||||
Stable (SB) | 15 | 1.29 | 0.10 | 1.23 | 1.35 | 15 | 1.34 | 0.13 | 1.27 | 1.40 | 3.73% | 1.31 | 0.12 | ||||
Asymmetric (AB) | 15 | 1.21 | 0.10 | 6.20% | 1.16 | 1.26 | 15 | 1.30 | 0.13 | 2.99% | 1.24 | 1.36 | 6.92% | 1.25 | 0.13 | 4.58% | |
Unstable Load (UB) | 15 | 1.20 | 0.11 | 6.98% | 1.13 | 1.26 | 15 | 1.28 | 0.14 | 4.48% | 1.22 | 1.35 | 6.25% | 1.24 | 0.13 | 5.34% | |
Fitball (FB) | 15 | 1.19 | 0.11 | 7.75% | 1.13 | 1.25 | 15 | 1.23 | 0.08 | 8.21% | 1.19 | 1.28 | 3.25% | 1.22 a | 0.09 | 6.87% | |
Bosu (BB) | 15 | 1.14 | 0.08 | 11.63% | 1.07 | 1.21 | 15 | 1.14 | 0.16 | 14.93% | 1.07 | 1.21 | 0.00% | 1.14 abc | 0.13 | 12.98% | |
Untrained PW | Trained PW | All Participants | |||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | ||||
LL | UP | LL | UP | ||||||||||||||
Stable (SB) | 15 | 401.13 | 64.81 | 365.22 | 437.05 | 15 | 466.33 | 70.87 | 430.42 | 502.25 | 13.98% | 473.73 | 74.51 | ||||
Asymmetric (AB) | 15 | 394.73 | 48.95 | 1.60% | 355.32 | 434.15 | 15 | 436.67 | 93.33 | 6.36% | 397.25 | 476.08 | 9.60% | 415.70 | 76.27 | 12.25% | |
Unstable Load (UB) | 15 | 388.27 | 54.21 | 3.21% | 353.35 | 423.19 | 15 | 435.60 | 76.02 | 6.59% | 400.68 | 470.52 | 10.87% | 411.93 a | 69.19 | 13.05% | |
Fitball (FB) | 15 | 367.27 | 56.01 | 8.44% | 334.52 | 400.01 | 15 | 398.53 | 67.32 | 14.54% | 365.78 | 431.28 | 7.84% | 382.90 abc | 62.89 | 19.17% | |
Bosu (BB) | 15 | 348.67 | 54.10 | 13.08% | 321.61 | 375.72 | 15 | 382.07 | 48.04 | 18.07% | 355.00 | 409.12 | 8.74% | 365.37 abc | 53.06 | 22.87% |
Untrained MPS | Trained MPS | All Participants | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | |||
LL | UP | LL | UP | |||||||||||||
Stable (SB) | 15 | 0.56 | 0.08 | 0.51 | 0.61 | 15 | 0.57 | 0.10 | 0.53 | 0.63 | 1.75% | 0.57 | 0.09 | |||
Asymmetric (AB) | 15 | 0.50 | 0.04 | 10.71% | 0.46 | 0.53 | 15 | 0.55 | 0.08 | 3.51% | 0.51 | 0.58 | 9.09% | 0.52 | 0.07 | 8.77% |
Unstable Load (UB) | 15 | 0.50 | 0.08 | 10.71% | 0.46 | 0.53 | 15 | 0.50 | 0.08 | 12.28% | 0.46 | 0.53 | 0.00% | 0.49 a | 0.07 | 14.04% |
Fitball (FB) | 15 | 0.45 | 0.14 | 19.64% | 0.40 | 0.52 | 15 | 0.48 | 0.06 | 15.79% | 0.44 | 0.52 | 6.25% | 0.48 a | 0.11 | 15.79% |
Bosu (BB) | 15 | 0.43 | 0.05 | 23.21% | 0.40 | 0.46 | 15 | 0.45 | 0.06 | 21.05% | 0.42 | 0.48 | 4.44% | 0.44 ab | 0.06 | 22.81% |
Untrained MS | Trained MS | All Participants | ||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | |||
LL | UP | LL | UP | |||||||||||||
Stable (SB) | 15 | 0.88 | 0.09 | 0.81 | 0.95 | 15 | 0.90 | 0.15 | 0.82 | 0.97 | 2.22% | 0.89 | 0.13 | |||
Asymmetric (AB) | 15 | 0.82 | 0.12 | 6.82% | 0.74 | 0.89 | 15 | 0.88 | 0.17 | 2.22% | 0.81 | 0.95 | 6.82% | 0.86 | 0.14 | 3.37% |
Unstable Load (UB) | 15 | 0.81 | 0.09 | 7.95% | 0.75 | 0.87 | 15 | 0.81 | 0.13 | 10.00% | 0.75 | 0.87 | 0.00% | 0.81 | 0.11 | 8.99% |
Fitball (FB) | 15 | 0.72 | 0.17 | 18.18% | 0.65 | 0.79 | 15 | 0.79 | 0.12 | 12.22% | 0.73 | 0.84 | 8.86% | 0.75 a | 0.11 | 15.73% |
Bosu (BB) | 15 | 0.71 | 0.09 | 19.32% | 0.66 | 0.76 | 15 | 0.76 | 0.10 | 15.56% | 0.69 | 0.83 | 6.58% | 0.74 a | 0.14 | 16.85% |
Untrained PW | Trained PW | All Participants | ||||||||||||||
N | M | SD | % Dif | IC—95% | N | M | SD | % Dif | IC—95% | % Dif. Groups | M | SD | % Dif. | |||
LL | UP | LL | UP | |||||||||||||
Stable (SB) | 15 | 379.73 | 52.59 | 1595.37 | 1790.55 | 15 | 421.07 | 100.27 | 1946.03 | 2145.08 | 9.82% | 400.4 | 81.43 | |||
Asymmetric (AB) | 15 | 375.67 | 69.07 | 1.07% | 1277.28 | 1470.51 | 15 | 399.93 | 88.33 | 5.02% | 1772.64 | 1969.69 | 6.07% | 387.8 | 78.88 | 3.15% |
Unstable Load (UB) | 15 | 371.60 | 60.78 | 2.14% | 1252.20 | 1424.87 | 15 | 392.80 | 86.91 | 6.71% | 1615.51 | 1791.59 | 5.40% | 382.2 | 74.47 | 4.55% |
Fitball (FB) | 15 | 336.60 | 63.18 | 11.36% | 1197.77 | 1340.87 | 15 | 344.00 | 72.43 | 18.30% | 1503.87 | 1649.81 | 2.15% | 340.2 abc | 84.79 | 15.03% |
Bosu (BB) | 15 | 314.87 | 52.82 | 17.08% | 1104.57 | 1254.13 | 15 | 343.80 | 104.27 | 18.35% | 1447.90 | 1600.42 | 8.41% | 329.43 abc | 64.02 | 17.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marquina, M.; Lorenzo-Calvo, J.; García-Sánchez, C.; Rubia, A.d.l.; Rivilla-García, J.; Ferro-Sánchez, A. How Does Instability Affect Bench Press Performance? Acute Effect Analysis with Different Loads in Trained and Untrained Populations. Sports 2023, 11, 67. https://doi.org/10.3390/sports11030067
Marquina M, Lorenzo-Calvo J, García-Sánchez C, Rubia Adl, Rivilla-García J, Ferro-Sánchez A. How Does Instability Affect Bench Press Performance? Acute Effect Analysis with Different Loads in Trained and Untrained Populations. Sports. 2023; 11(3):67. https://doi.org/10.3390/sports11030067
Chicago/Turabian StyleMarquina, Moisés, Jorge Lorenzo-Calvo, Carlos García-Sánchez, Alfonso de la Rubia, Jesús Rivilla-García, and Amelia Ferro-Sánchez. 2023. "How Does Instability Affect Bench Press Performance? Acute Effect Analysis with Different Loads in Trained and Untrained Populations" Sports 11, no. 3: 67. https://doi.org/10.3390/sports11030067
APA StyleMarquina, M., Lorenzo-Calvo, J., García-Sánchez, C., Rubia, A. d. l., Rivilla-García, J., & Ferro-Sánchez, A. (2023). How Does Instability Affect Bench Press Performance? Acute Effect Analysis with Different Loads in Trained and Untrained Populations. Sports, 11(3), 67. https://doi.org/10.3390/sports11030067