Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies
Abstract
:1. Introduction
2. Methods
- (A)
- Slow-paced breathing
- (B)
- Fast-paced breathing
3. Breathing: Physiological and Mechanical Aspects
4. Breathing Pace and Its Effects on Physiological and Psychological Aspects
4.1. Slow-Paced Breathing
4.1.1. VSB: Physiological Perspective
4.1.2. VSB: Psychological Perspective
4.2. Fast-Paced Breathing
4.2.1. VFB: Physiological Perspective
4.2.2. VFB: Psychological Perspective
5. Perspective of the Athlete on Breathing and Practical Applications in Sports
5.1. Breathing in Sport: Examples of Practical Applications
5.1.1. Before Exercise
5.1.2. During Exercise
5.1.3. After Exercise
6. Discussion
- Oxygen delivery: the respiratory rate determines the amount of oxygen that is delivered to the muscles during exercise, which is critical for peak athletic performance.
- Carbon dioxide elimination: the respiratory rate also determines the amount of carbon dioxide that is eliminated from the body during exercise, which can help improve athletic performance.
- Heart rate regulation: the respiratory rate can also affect the heart rate, which is important for peak athletic performance and reducing feelings of stress and anxiety during exercise.
- Concentration and focus: the breathing rate can also affect the athlete’s focus and concentration during exercise. Controlled, rhythmic breathing can help improve focus and concentration, allowing for better athletic performance.
Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Seals, D.R.; Suwarno, N.O.; Dempsey, J.A. Influence of lung volume on sympathetic nerve discharge in normal humans. Circ. Res. 1990, 67, 130–141. [Google Scholar] [CrossRef]
- Hagbarth, K.E.; Vallbo, Å.B. Pulse and respiratory grouping of sympathetic impulses in human muscle-nerves. Acta Physiol. Scand. 1968, 74, 96–108. [Google Scholar] [CrossRef]
- Fisher, J.P.; Zera, T.; Paton, J.F.R. Respiratory-cardiovascular interactions. Handb. Clin. Neurol. 2022, 188, 279–308. [Google Scholar]
- Eckberg, D.L.; Nerhed, C.; Wallin, B.G. Respiratory modulation of muscle sympathetic and vagal cardiac outflow in man. J. Physiol 1985, 365, 181–196. [Google Scholar] [CrossRef]
- Limberg, J.K.; Morgan, B.J.; Schrage, W.G.; Dempsey, J.A. Respiratory influences on muscle sympathetic nerve activity and vascular conductance in the steady state. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1615–H1623. [Google Scholar] [CrossRef]
- De Burgh Daly, M.; Hazzledine, J.L.; Ungar, A. The reflex effects of alterations in lung volume on systemic vascular resistance in the dog. J. Physiol. 1967, 188, 331–351. [Google Scholar] [CrossRef]
- Illi, S.K.; Held, U.; Frank, I.; Spengler, C.M. Effect of respiratory muscle training on exercise performance in healthy individuals, a systematic review and meta-analysis. Sports Med. 2012, 42, 707–724. [Google Scholar] [CrossRef]
- HajGhanbari, B.; Yamabayashi, C.; Buna, T.R.; Coelho, J.D.; Freedman, K.D.; Morton, T.A.; Palmer, S.A.; Toy, M.A.; Walsh, C.; Sheel, A.W.; et al. Effects of respiratory muscle training on performance in athletes, a systematic review with meta-analyses. J. Strength Cond. Res. 2013, 27, 1643–1663. [Google Scholar] [CrossRef]
- Nicks, C.R.; Morgan, D.W.; Fuller, D.K.; Caputo, J.L. The influence of respiratory muscle training upon intermittent exercise performance. Int. J. Sports Med. 2009, 30, 16–21. [Google Scholar] [CrossRef]
- Gee, C.M.; Williams, A.M.; Sheel, A.W.; Eves, N.D.; West, C.R. Respiratory muscle training in athletes with cervical spinal cord injury: Effects on cardiopulmonary function and exercise capacity. J. Physiol. 2019, 597, 3673–3685. [Google Scholar] [CrossRef]
- Sales, A.T.; Fregonezi, G.A.; Ramsook, A.H.; Guenette, J.A.; Lima, I.N.; Reid, W.D. Respiratory muscle endurance after training in athletes and non-athletes, A systematic review and meta-analysis. Phys. Ther. Sport 2016, 17, 76–86. [Google Scholar] [CrossRef]
- Guyenet, P.G. Regulation of Breathing and Autonomic Outflows by Chemoreceptors. Compr. Physiol. 2014, 4, 1511. [Google Scholar]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life, A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef]
- Wallin, B.G.; Hart, E.C.; Wehrwein, E.A.; Charkoudian, N.; Joyner, M.J. Relationship between breathing and cardiovascular function at rest, sex-related differences. Acta Physiol. 2010, 200, 193–200. [Google Scholar] [CrossRef]
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 2017, 13, 298. [Google Scholar] [CrossRef]
- Guenette, J.A.; Sheel, A.W. Physiological consequences of a high work of breathing during heavy exercise in humans. J. Sci. Med. Sport 2007, 10, 341–350. [Google Scholar] [CrossRef]
- Narkiewicz, K.; van de Borne, P.; Montano, N.; Hering, D.; Kara, T.; Somers, V.K. Sympathetic neural outflow and chemoreflex sensitivity are related to spontaneous breathing rate in normal men. Hypertension 2006, 47, 51–55. [Google Scholar] [CrossRef]
- Pal, G.K.; Velkumary, S.; Madanmohan. Effect of short-term practice of breathing exercises on autonomic functions in normal human volunteers. Indian J. Med. Res. 2004, 120, 115–121. [Google Scholar]
- Morton, A.R. Exercise Physiology. In Pediatric Respiratory Medicine; Taussing, L.M., Landau, L.I., Eds.; Mosby Elsevier: Maryland Heights, MO, USA, 2008; pp. 99–110. [Google Scholar]
- European Lung Fondation. Your lungs and exercise. Breathe 2016, 12, 97–100. [Google Scholar] [CrossRef]
- Amann, M. Pulmonary system limitations to endurance exercise performance in humans. Exp. Physiol. 2012, 97, 311–318. [Google Scholar] [CrossRef]
- Harms, C.A.; Wetter, T.J.; McClaran, S.R.; Pegelow, D.F.; Nickele, G.A.; Nelson, W.B.; Hanson, P.; Dempsey, J.A. Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J. Appl. Physiol. 1998, 85, 609–618. [Google Scholar] [CrossRef]
- Harms, C.A.; Babcock, M.A.; McClaran, S.R.; Pegelow, D.F.; Nickele, G.A.; Nelson, W.B.; Dempsey, J.A. Respiratory muscle work compromises leg blood flow during maximal exercise. J. Appl. Physiol. 1997, 82, 1573–1583. [Google Scholar] [CrossRef]
- Desai, J.P.; Moustarah, F. Pulmonary Compliance. Am. J. Dis. Child. 2022, 123, 89–95. [Google Scholar]
- Bettinelli, D.; Kays, C.; Bailliart, O.; Capderou, A.; Techoueyres, P.; Lachaud, J.L.; Vaïda, P.; Miserocchi, G. Effect of gravity and posture on lung mechanics. J. Appl. Physiol. 2002, 93, 2044–2052. [Google Scholar] [CrossRef]
- Homma, I.; Masaoka, Y. Breathing rhythms and emotions. Exp. Physiol. 2008, 93, 1011–1021. [Google Scholar] [CrossRef]
- Park, S.B.; Khattar, D. Tachypnea; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Whited, L.; Graham, D.D. Abnormal Respirations; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Brodal, P. The Central Nervous System, Structure and Function, 3rd ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Gerritsen, R.J.S.; Band, G.P.H. Breath of Life, The Respiratory Vagal Stimulation Model of Contemplative Activity. Front. Hum. Neurosci. 2018, 12, 397. [Google Scholar] [CrossRef]
- Pizzoli, S.F.M.; Marzorati, C.; Gatti, D.; Monzani, D.; Mazzocco, K.; Pravettoni, G. A meta-analysis on heart rate variability biofeedback and depressive symptoms. Sci. Rep. 2021, 11, 6650. [Google Scholar] [CrossRef]
- Goessl, V.C.; Curtiss, J.E.; Hofmann, S.G. The effect of heart rate variability biofeedback training on stress and anxiety, a meta-analysis. Psychol. Med. 2017, 47, 2578–2586. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B. Resonant frequency biofeedback training to increase cardiac variability, Rationale and manual for training. Appl. Psychophysiol. Biofeedback 2000, 25, 177–191. [Google Scholar] [CrossRef]
- Laborde, S.; Allen, M.S.; Borges, U.; Dosseville, F.; Hosang, T.J.; Iskra, M.; Mosley, E.; Salvotti, C.; Spolverato, L.; Zammit, N.; et al. Effects of voluntary slow breathing on heart rate and heart rate variability, A systematic review and a meta-analysis. Neurosci. Biobehav. Rev. 2022, 138, 104711. [Google Scholar] [CrossRef]
- Sherwood, L. Fundamentals of Physiology, a Human Perspective, 3rd ed.; Cengage Learning: Boston, MA, USA, 2005. [Google Scholar]
- Tinello, D.; Kliegel, M.; Zuber, S. Does Heart Rate Variability Biofeedback Enhance Executive Functions Across the Lifespan? A Systematic Review. J. Cogn. Enhanc. 2022, 6, 126–142. [Google Scholar] [CrossRef]
- Alayan, N.; Eller, L.; Bates, M.E.; Carmody, D.P. Current Evidence on Heart Rate Variability Biofeedback as a Complementary Anticraving Intervention. J. Altern. Complement. Med. 2018, 24, 1039–1050. [Google Scholar] [CrossRef]
- Reneau, M. Heart Rate Variability Biofeedback to Treat Fibromyalgia, An Integrative Literature Review. Pain Manag. Nurs. 2020, 21, 225–232. [Google Scholar] [CrossRef]
- Pagaduan, J.C.; Chen, Y.S.; Fell, J.W.; Wu, S.S.X. Can Heart Rate Variability Biofeedback Improve Athletic Performance? A Systematic Review. J. Hum. Kinet. 2020, 73, 103–114. [Google Scholar] [CrossRef]
- Pagaduan, J.C.; Chen, Y.S.; Fell, J.W.; Xuan Wu, S.S. A preliminary systematic review and meta-analysis on the effects of heart rate variability biofeedback on heart rate variability and respiration of athletes. J. Complement. Integr. Med. 2021, 19, 817–826. [Google Scholar] [CrossRef]
- Lewis, R.A.; Howell, J.B. Definition of the hyperventilation syndrome. Bull Eur. Physiopathol. Respir. 1986, 22, 201–205. [Google Scholar]
- Kallet, R.H.; Hemphill, J.C., 3rd; Dicker, R.A.; Alonso, J.A.; Campbell, A.R.; Mackersie, R.C.; Katz, J.A. The Spontaneous Breathing Pattern and Work of Breathing of Patients with Acute Respiratory Distress Syndrome and Acute Lung Injury. Respir. Care 2007, 52, 989–995. [Google Scholar]
- Perciavalle, V.; Blandini, M.; Fecarotta, P.; Buscemi, A.; Di Corrado, D.; Bertolo, L.; Fichera, F.; Coco, M. The role of deep breathing on stress. Neurol. Sci. 2017, 38, 451–458. [Google Scholar] [CrossRef]
- Malberg, J.; Hadziosmanovic, N.; Smekal, D. Physiological respiratory parameters in pre-hospital patients with suspected COVID-19, A prospective cohort study. PLoS ONE 2021, 16, e0257018. [Google Scholar] [CrossRef]
- Jafari, H.; Courtois, I.; Van den Bergh, O.; Vlaeyen, J.W.S.; Van Diest, I. Pain and respiration, a systematic review. Pain 2017, 158, 995–1006. [Google Scholar] [CrossRef]
- Buchanan, T.L.; Janelle, C.M. Fast breathing facilitates reaction time and movement time of a memory-guided force pulse. Hum. Mov. Sci. 2021, 76, 102762. [Google Scholar] [CrossRef] [PubMed]
- Mourya, M.; Mahajan, A.S.; Singh, N.P.; Jain, A.K. Effect of slow- and fast-breathing exercises on autonomic functions in patients with essential hypertension. J. Altern. Complement. Med. 2009, 15, 711–717. [Google Scholar] [CrossRef]
- Matfin, G.; Durand, D.; Christopher, K.R.; Adelman, H.M. A confused man with rapid respiration. Hosp. Pract. 1998, 33, 19–23. [Google Scholar]
- Lucero García Rojas, E.Y.; Villanueva, C.; Bond, R.A. Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Front. Cardiovasc. Med. 2021, 8, 709509. [Google Scholar] [CrossRef]
- Harbour, E.; Stöggl, T.; Schwameder, H.; Finkenzeller, T. Breath Tools, A Synthesis of Evidence-Based Breathing Strategies to Enhance Human Running. Front. Physiol. 2022, 13, 813243. [Google Scholar] [CrossRef] [PubMed]
- Fincham, G.W.; Strauss, C.; Montero-Marin, J.; Cavanagh, K. Effect of breathwork on stress and mental health, A meta-analysis of randomised-controlled trials. Sci. Rep. 2023, 13, 432. [Google Scholar] [CrossRef] [PubMed]
- Van Diest, I.; Winters, W.; Devriese, S.; Vercamst, E.; Han, J.N.; Van de Woestijne, K.P.; Van den Bergh, O. Hyperventilation beyond fight/flight, respiratory responses during emotional imagery. Psychophysiology 2001, 38, 961–968. [Google Scholar] [CrossRef]
- Nardi, A.E.; Freire, R.C.; Zin, W.A. Panic disorder and control of breathing. Respir. Physiol. Neurobiol. 2009, 167, 133–143. [Google Scholar] [CrossRef]
- Bae, D.; Matthews, J.J.L.; Chen, J.J.; Mah, L. Increased exhalation to inhalation ratio during breathing enhances high-frequency heart rate variability in healthy adults. Psychophysiology 2021, 58, e13905. [Google Scholar] [CrossRef]
- Laborde, S.; Iskra, M.; Zammit, N.; Borges, U.; You, M.; Sevoz-Couche, C.; Dosseville, F. Slow-Paced Breathing, Influence of Inhalation/Exhalation Ratio and of Respiratory Pauses on Cardiac Vagal Activity. Sustainability 2021, 13, 7775. [Google Scholar] [CrossRef]
- Balke, B.; Lillehei, J.P. Effect of hyperventilation on performance. J. Appl. Physiol. 1956, 9, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, J.E.; Sharma, S. Respiratory Alkalosis; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ford, J.L.; Ildefonso, K.; Jones, M.L.; Arvinen-Barrow, M. Sport-related anxiety, current insights. Open Access J. Sports Med. 2017, 8, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, G.M.; Di Filippo, G.; Russo, L.; Orgiana, T.; Ardigò, L.P.; Casal, M.Z.; Peyré-Tartaruga, L.A.; Padulo, J. Effects of Mental Fatigue on Reaction Time in Sportsmen. Int. J. Environ. Res. Public Health 2022, 19, 14360. [Google Scholar] [CrossRef]
- Kim, E.; Lee, H. The Effects of Deep Abdominal Muscle Strengthening Exercises on Respiratory Function and Lumbar Stability. J. Phys. Ther. Sci. 2013, 25, 663–665. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliaccio, G.M.; Russo, L.; Maric, M.; Padulo, J. Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports 2023, 11, 103. https://doi.org/10.3390/sports11050103
Migliaccio GM, Russo L, Maric M, Padulo J. Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports. 2023; 11(5):103. https://doi.org/10.3390/sports11050103
Chicago/Turabian StyleMigliaccio, Gian Mario, Luca Russo, Mike Maric, and Johnny Padulo. 2023. "Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies" Sports 11, no. 5: 103. https://doi.org/10.3390/sports11050103
APA StyleMigliaccio, G. M., Russo, L., Maric, M., & Padulo, J. (2023). Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports, 11(5), 103. https://doi.org/10.3390/sports11050103