Detraining’s Effects on Cardiorespiratory Fitness and Maximal and Explosive Strength in Army Soldiers: Does Age Matter?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design
2.3. Methodology
2.3.1. Anthropometrics
2.3.2. Cardiopulmonary Exercise Test (CPET)
2.3.3. Single-Leg CMJ Test
2.3.4. Maximal Isometric Muscle Strength
2.3.5. Statistical Analysis
3. Results
3.1. Effects of Detraining on Baseline Parameters and Maximal Isometric Strength
3.2. Effects of Detraining on Cardiorespiratory Fitness
3.3. Effects of Detraining on CMJ Performance, Kinetic and Kinematic
4. Discussion
4.1. Cardiovascular Adaptations to Detraining in Army Soldiers
4.2. Detraining Effects on Jump Performance
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mujika, I.; Padilla, S. Detraining: Loss of training-induced physiological and performance adaptations. Part I: Short term insufficient training stimulus. Sports Med. 2000, 30, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Padilla, S. Detraining: Loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Med. 2000, 30, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Hsieh, Y.Y.; Ho, J.Y.; Lin, T.Y.; Lin, J.C. Two weeks of detraining reduces cardiopulmonary function and muscular fitness in endurance athletes. Eur. J. Sport Sci. 2022, 22, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Kannas, T.M.; Amiridis, I.G.; Arabatzi, F.; Katis, A.; Kellis, E. Changes in specific jumping performance after detraining period. J. Sports Med. Phys. Fit. 2015, 55, 1150–1156. [Google Scholar]
- Cullinane, E.M.; Sady, S.P.; Vadeboncoeur, L.; Burke, M.; Thompson, P.D. Cardiac size and VO2max do not decrease after short-term exercise cessation. Med. Sci. Sports Exerc. 1986, 18, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Bohrer Claude, A.; Sharp, R.L. The effectiveness of cycle ergometer training in maintaining aerobic fitness during detraining from competitive swimming. J. Swim. Res. 1991, 7, 17–20. [Google Scholar]
- Wise, S.R.; Trigg, S.D. Optimizing Health, Wellness, and Performance of the Tactical Athlete. Curr. Sports Med. Rep. 2020, 19, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Haigney, M.C.; Levine, B.D.; Dineen, E.H. The Tactical Athlete: Definitions, Cardiovascular Assessment, and Management, and “Fit for Duty” Standards. Cardiol. Clin. 2023, 41, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, C.; Anderson, T. Original Strength for the Tactical Athlete; Garnet Press: Reading, UK, 2018. [Google Scholar]
- Ritland, B.M.; Simonelli, G.; Gentili, R.J.; Smith, J.C.; He, X.; Oh, H.; Balkin, T.J.; Hatfield, B.D. Sleep health and its association with performance and motivation in tactical athletes enrolled in the Reserve Officers’ Training Corps. Sleep Health 2019, 5, 309–314. [Google Scholar] [CrossRef]
- Abt, J.P.; Perlsweig, K.; Nagai, T.; Sell, T.C.; Wirt, M.D.; Lephart, S.M. Effects of Age and Military Service on Strength and Physiological Characteristics of U.S. Army Soldiers. Mil. Med. 2016, 181, 173–179. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; De Ridder, H. International Society for the Advancement of Kinanthropometry; International Standards for Anthropometric Assessment: Potchefstroom, South Africa, 2011. [Google Scholar]
- Andrade, D.C.; Henriquez-Olguín, C.; Beltrán, A.R.; Ramírez, M.A.; Labarca, C.; Cornejo, M.; Álvarez, C.; Ramírez-Campillo, R. Effects of general, specific and combined warm-up on explosive muscular performance. Biol. Sport 2015, 32, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K. The anaerobic threshold measurement to evaluate exercise performance. Am. Rev. Respir. Dis. 1984, 129, S35–S40. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [PubMed]
- Harry, J.R.; Barker, L.A.; Tinsley, G.M.; Krzyszkowski, J.; Chowning, L.D.; Mcmahon, J.J.; Lake, J. Relationships among countermovement vertical jump performance metrics, strategy variables, and inter-limb asymmetry in females. Sports Biomech. 2021, 5, 1–19. [Google Scholar] [CrossRef]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Merino-Muñoz, P.; Miarka, B.; Pérez-Contreras, J.; Moya Jofré, C.; Bustamante-Garrido, A.; Cerda-Kohler, H.; Brito, C.; Aedo-Muñoz, E. Relationship between external load and differences in countermovement jump in an official match of professional female soccer players. In Proceedings of the 40th International Society of Biomechanics in Sports Conference, Liverpool, UK, 19–23 July 2022. [Google Scholar]
- Merino-Muñoz, P.; Pérez-Contreras, J.; Aedo-Muñoz, E.; Bustamante-Garrido, A. Relationship between jump height and rate of braking force development in professional soccer players. J. Phys. Educ. Sport 2020, 20, 3614–3621. [Google Scholar] [CrossRef]
- Coyle, E.F.; Hemmert, M.K.; Coggan, A.R. Effects of detraining on cardiovascular responses to exercise: Role of blood volume. J. Appl. Physiol. 1986, 60, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Kyrolainen, H.; Pihlainen, K.; Vaara, J.P.; Ojanen, T.; Santtila, M. Optimising training adaptations and performance in military environment. J. Sci. Med. Sport 2018, 21, 1131–1138. [Google Scholar] [CrossRef]
- Mala, J.; Szivak, T.K.; Flanagan, S.D.; Comstock, B.A.; Laferrier, J.Z.; Maresh, C.M.; Kraemer, W.J. The role of strength and power during performance of high intensity military tasks under heavy load carriage. US Army Med. Dep. J. 2015, Apr–Jun, 3–11. [Google Scholar]
- Ojanen, T.; Hakkinen, K.; Hanhikoski, J.; Kyrolainen, H. Effects of Task-Specific and Strength Training on Simulated Military Task Performance in Soldiers. Int. J. Environ. Res. Public Health 2020, 17, 8000. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.A.; Nakamura, F.Y.; Castilho, C.; Kitamura, K.; Kobal, R.; Cal Abad, C.C.; Loturco, I. The impact of detraining on cardiac autonomic function and specific endurance and muscle power performances of high-level endurance runners. J. Sports Med. Phys. Fit. 2016, 56, 1583–1591. [Google Scholar]
- Marques, M.C.; Gonzalez-Badillo, J.J. In-season resistance training and detraining in professional team handball players. J. Strength Cond. Res. 2006, 20, 563–571. [Google Scholar] [PubMed]
- Zarkadas, P.C.; Carter, J.B.; Banister, E.W. Modelling the effect of taper on performance, maximal oxygen uptake, and the anaerobic threshold in endurance triathletes. Adv. Exp. Med. Biol. 1995, 393, 179–186. [Google Scholar] [CrossRef]
- Mujika, I. The influence of training characteristics and tapering on the adaptation in highly trained individuals: A review. Int. J. Sports Med. 1998, 19, 439–446. [Google Scholar] [CrossRef]
20–29 Years (n = 7) | 30–40 Years (n = 7) | |||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Age (years) | 25.8 ± 2.10 | - | 32.8 ± 3.19 * | - |
Weight (kg) | 64.8 ± 7.14 | 65.5 ± 7.16 | 60.5 ± 8.34 | 60.7 ± 8.48 |
Height (m) | 1.69 ± 0.05 | - | 1.64 ± 0.08 | - |
BMI (kg/m2) | 22.8 ± 1.42 | 23.0 ± 1.38 | 22.4 ± 1.41 | 22.4 ± 1.44 |
Fat mass (%) | 22.3 ± 4.77 | 23.1 ± 3.96 | 23.4 ± 4.02 | 23.2 ± 3.60 |
Fat-free mass (kg) | 50.53 ± 7.37 | 50.4 ± 7.15 | 46.4 ± 7.8 | 46.7 ± 8.05 |
Isometric strength (N) | 1122 ± 251 | 1124 ± 221 | 1097 ± 252 | 1105 ± 295 |
VT1 | VT2 | |||||||
---|---|---|---|---|---|---|---|---|
20–29 | 30–40 | 20–29 | 30–40 | |||||
Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
VO2 (mL/kg/min) | 2.66 ± 0.42 | 2.59 ± 0.48 | 2.72 ± 0.58 | 2.67 ± 0.59 | 3.19 ± 0.55 | 3.30 ± 0.46 | 3.12 ± 0.72 | 3.15 ± 0.66 |
VE (L/min) | 76. 51 ± 15.39 | 70.68 ± 14.80 | 75.32 ± 16.32 | 72.34 ± 20.28 | 100.61 ± 17.28 | 104.44 ± 15.18 | 97.80 ± 21.48 | 96.74 ± 25.63 |
IV | 73.50 ± 14.70 | 67.81 ± 14.40 | 72.67 ± 16.07 | 69.40± 19.72 | 96.38 ± 16.49 | 100.19 ± 14.68 | 93.67 ± 20.91 | 92.60 ± 24.70 |
VCO2 (mL/kg/min) | 2.20 ± 0.46 | 2.10 ± 0.46 | 2.28 ± 0.49 | 2.21 ± 0.57 | 2.79 ± 0.50 | 3.02 ± 0.47 | 2.82 ± 0.59 | 2.87 ± 0.66 |
EqO2 | 28.63 ± 3.59 | 27.25 ± 2.83 | 27.92 ± 4.03 | 27.00 ± 4.32 | 31.75 ± 3.58 | 31.75 ± 1.49 | 31.67 ± 3.22 | 30.80 ± 4.10 |
EqCO2 | 34.81 ± 3.03 | 33.88 ± 3.50 | 33.50 ± 3.39 | 33.00 ± 5.30 | 36.19 ± 4.25 | 34.69 ± 3.54 | 34.92 ± 2.89 | 34.00 ± 4.05 |
FEO2 (%) | 19.15 ± 0.59 | 18.95 ± 0.39 | 18.95 ± 0.52 | 18.78 ± 0.76 | 19.52 ± 0.50 | 19.53 ± 0.21 | 19.46 ± 0.39 | 19.29 ± 0.57 |
FECO2 (%) | 3.81 ± 0.38 | 3.93 ± 0.38 | 3.99 ± 0.39 | 4.20 ± 0.69 | 3.69 ± 0.43 | 3.83 ± 0.38 | 3.81 ± 0.34 | 4.09 ± 0.56 |
VE/VO2 | 28.70 ± 3.60 | 27.33 ± 2.74 | 27.92 ± 4.03 | 27.11 ± 4.28 | 31.71 ± 3.57 | 31.69 ± 1.53 | 31.65 ± 3.21 | 30.70 ± 3.87 |
VE/VCO2 | 34.88 ± 3.11 | 33.80 ± 3.48 | 33.32 ± 3.31 | 33.11 ± 5.21 | 36.21 ± 4.12 | 34.79 ± 3.49 | 34.85 ± 2.90 | 33.96 ± 4.26 |
PetO2 (mmHg) | 100.94 ± 4.18 | 100.00 ± 2.88 | 99.50 ± 3.90 | 99.20 ± 5.89 | 104.94 ± 3.65 | 105.31 ± 1.89 | 103.75 ± 3.88 | 103.70 ± 4.72 |
PetCO2 (mmHg) | 34.69 ± 2.62 | 35.63 ± 2.99 | 36.17 ± 2.93 | 37.50 ± 5.79 | 32.75 ± 3.16 | 34.00 ± 3.23 | 34.67 ± 3.19 | 36.20 ± 4.71 |
RQ | 0.82 ± 0.09 | 0.81 ± 0.07 | 0.84 ± 0.06 | 0.82 ± 0.05 | 0.88 ± 0.10 | 0.92 ± 0.07 | 0.91 ± 0.05 | 0.91 ± 0.03 |
20–29 Years (n = 7) | 30–40 Years (n = 7) | |||||||
---|---|---|---|---|---|---|---|---|
Dominant | Non-Dominant | Dominant | Non-Dominant | |||||
Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
CT (s) | 0.72 ± 0.05 | 0.68 ± 0.10 | 0.74 ± 0.10 | 0.74 ± 0.06 | 0.69 ± 0.13 | 0.70 ± 0.11 | 0.71 ± 0.06 | 0.72 ± 0.06 |
CCT (s) | 0.28 ± 0.04 | 0.27 ± 0.05 | 0.28 ± 0.04 | 0.27 ± 0.03 | 0.27 ± 0.03 | 0.26 ± 0.05 | 0.26 ± 0.04 | 0.26 ± 0.03 |
UT (s) | 0.16 ± 0.07 | 0.14 ± 0.05 | 0.18 ± 0.07 | 0.18 ± 0.06 | 0.26 ± 0.02 | 0.26 ± 0.05 | 0.26 ± 0.04 | 0.26 ± 0.03 |
RSI-M | 0.40 ± 0.07 | 0.41 ± 0.06 | 0.39 ± 0.08 | 0.37 ± 0.08 | 0.35 ± 0.09 | 0.34 ± 0.10 | 0.35 ± 0.09 | 0.31 ± 0.07 |
PF (N) | 816 ± 106 | 783 ± 148 | 807 ± 67 | 779 ± 76 | 729 ± 142 | 690 ± 181 | 719 ± 144 | 690 ± 105 |
PF (N/kg) | 23.13 ± 2.48 | 22.6 ± 3.70 | 24.75 ± 2.66 | 23.13 ± 2.70 | 21.67 ± 2.07 | 21.3 ± 2.07 | 22.6 ± 2.88 | 23.1 ± 2.48 |
PP (W) | 1337 ± 356 | 1399 ± 473 | 1317 ± 163 | 1256 ± 232 | 1106 ± 384 | 966 ± 293 | 1150 ± 341 | 1218 ± 393 |
PP (W/kg) | 37.75 ± 8.38 | 39.63 ± 11.14 | 40.50 ± 8.09 | 37.13 ± 6.78 | 32.67 ± 8.27 | 30.17 ± 3.76 | 36.17 ± 9.37 | 40.17 ± 8.91 |
P-RFD (N/s) | 6189 ± 2471 | 5908 ± 2728 | 6229 ± 1538 | 6257 ± 1821 | 4062 ± 948 | 4431 ± 2157 | 4747 ± 1539 | 4223 ± 1100 |
T-P-RFD (s) | 0.32 ± 0.05 | 0.27 ± 0.07 | 0.33 ± 0.05 | 0.32 ± 0.06 | 0.32 ± 0.06 | 0.32 ± 0.06 | 0.33 ± 0.04 | 0.33 ± 0.06 |
RFD-Y (N/s) | 2164 ± 925 | 2284 ± 898 | 2454 ± 762 | 2324 ± 453 | 1382 ± 518 | 1659 ± 921 | 1721 ± 527 | 1459 ± 346 |
RFD-Y (N/s/kg) | 61.75 ± 25.73 | 65.63 ± 24.42 | 72.88 ± 14.19 | 67.88 ± 8.29 | 40.50 ± 12.53 | 50.50 ± 19.60 | 54.00 ± 14.14 | 49.17 ± 13.67 |
T-RFD-Y (s) | 0.13 ± 0.04 | 0.11 ± 0.03 | 0.12 ± 0.02 | 0.11 ± 0.02 | 0.15 ± 0.04 | 0.14 ± 0.05 | 0.13 ± 0.03 | 0.14 ± 0.04 |
RFD-B (N/s) | 2966 ± 817 | 2790 ± 984 | 2906 ± 721 | 2648 ± 839 | 2489 ± 753 | 2465 ± 893 | 2512 ± 897 | 2369 ± 583 |
RFD-B (N/s/kg) | 84.88 ± 25.63 | 81.22 ± 27.57 | 90.75 ± 30.70 | 80.38 ± 30.91 | 73.00 ± 14.48 | 76.17 ± 17.68 | 78.83 ± 27.01 | 79.17 ± 19.81 |
T-RFD-B (s) | 0.16 ± 0.03 | 0.16 ± 0.05 | 0.17 ± 0.04 | 0.17 ± 0.03 | 0.15 ± 0.03 | 0.15 ± 0.02 | 0.16 ± 0.02 | 0.16 ± 0.01 |
RFD-E (N/s) | 2560 ± 680 | 2521 ± 814 | 2623 ± 294 | 2472 ± 459 | 1938 ± 608 | 2080 ± 903 | 2133 ± 630 | 1919 ± 344 |
RFD-E (N/s/kg) | 73.38 ± 21.15 | 73.00 ± 22.73 | 80.75 ± 15.17 | 74.25 ± 18.60 | 56.83 ± 12.22 | 63.83 ± 18.66 | 66.833 ± 18.41 | 64.17 ± 12.70 |
T-RFD-E (s) | 0.29 ± 0.06 | 0.26 ± 0.07 | 0.29 ± 0.04 | 0.29 ± 0.04 | 0.30 ± 0.06 | 0.29 ± 0.06 | 0.29 ± 0.04 | 0.30 ± 0.04 |
EI (N·s) | 33.59 ± 27.34 | 25.735 ± 11.08 | 25.74 ± 11.07 | 24.43 ± 4.80 | 13.83 ± 6.62 | 15.83 ± 7.25 | 18.17 ± 9.77 | 17.83 ± 4.12 |
S (N/m/kg) | 100.63 ± 43.78 | 112.63 ± 45.28 | 90.88 ± 34.16 | 84.50 ± 23.30 | 152.33 ± 150.43 | 106.33 ± 39.24 | 97.50 ± 12.44 | 97.33 ± 22.97 |
PL (N) | 1568 ± 226 | 1489 ± 412 | 1345 ± 410 | 1605 ± 329 | 1498 ± 288 | 1342 ± 233 | 1455 ± 544 | 1558 ± 408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arce-Álvarez, A.; Zaio, Á.; Salazar-Ardiles, C.; Álvarez, C.; Merino-Muñoz, P.; Vasquez-Muñoz, M.; Izquierdo, M.; Castro, M.; Andrade, D.C. Detraining’s Effects on Cardiorespiratory Fitness and Maximal and Explosive Strength in Army Soldiers: Does Age Matter? Sports 2024, 12, 183. https://doi.org/10.3390/sports12070183
Arce-Álvarez A, Zaio Á, Salazar-Ardiles C, Álvarez C, Merino-Muñoz P, Vasquez-Muñoz M, Izquierdo M, Castro M, Andrade DC. Detraining’s Effects on Cardiorespiratory Fitness and Maximal and Explosive Strength in Army Soldiers: Does Age Matter? Sports. 2024; 12(7):183. https://doi.org/10.3390/sports12070183
Chicago/Turabian StyleArce-Álvarez, Alexis, Ángelo Zaio, Camila Salazar-Ardiles, Cristian Álvarez, Pablo Merino-Muñoz, Manuel Vasquez-Muñoz, Mikel Izquierdo, Mauricio Castro, and David C. Andrade. 2024. "Detraining’s Effects on Cardiorespiratory Fitness and Maximal and Explosive Strength in Army Soldiers: Does Age Matter?" Sports 12, no. 7: 183. https://doi.org/10.3390/sports12070183
APA StyleArce-Álvarez, A., Zaio, Á., Salazar-Ardiles, C., Álvarez, C., Merino-Muñoz, P., Vasquez-Muñoz, M., Izquierdo, M., Castro, M., & Andrade, D. C. (2024). Detraining’s Effects on Cardiorespiratory Fitness and Maximal and Explosive Strength in Army Soldiers: Does Age Matter? Sports, 12(7), 183. https://doi.org/10.3390/sports12070183