Changes in the Expression of Inflammatory Genes Induced by Chronic Exercise in the Adipose Tissue: Differences by Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Outcome Measures
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sepúlveda, J.; Murray, C. The state of global health in 2014. Science 2014, 345, 1275–1278. [Google Scholar] [CrossRef]
- WHO. European Regional Obesity Report 2022; WHO: Geneva, Switzerland, 2022; Volume 2023. [Google Scholar]
- Atakan, M.M.; Koşar, Ş.N.; Güzel, Y.; Tin, H.T.; Yan, X. The role of exercise, diet, and cytokines in preventing obesity and improving adipose tissue. Nutrients 2021, 13, 1459. [Google Scholar] [CrossRef]
- Ghanemi, A.; Melouane, A.; Yoshioka, M.; St-Amand, J. Exercise and High-Fat Diet in Obesity: Functional Genomics Perspectives of Two Energy Homeostasis Pillars. Genes 2020, 11, 875. [Google Scholar] [CrossRef]
- Erlich, A.T.; Brownlee, D.M.; Beyfuss, K.; Hood, D.A. Exercise induces TFEB expression and activity in skeletal muscle in a PGC-1α-dependent manner. Am. J. Physiol.-Cell Physiol. 2017, 314, C62–C72. [Google Scholar] [CrossRef]
- Vainshtein, A.; Tryon, L.D.; Pauly, M.; Hood, D.A. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am. J. Physiol.-Cell Physiol. 2015, 308, C710–C719. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.G.; Qi, Z.; Cui, D.; Ding, S. Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle. Exp. Physiol. 2016, 101, 410–420. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, L.; He, T. Potential effect of exercise in ameliorating insulin resistance at transcriptome level. J. Sports Med. Phys. Fit. 2019, 59, 116–125. [Google Scholar] [CrossRef]
- Ringholm, S.; Grunnet Knudsen, J.; Leick, L.; Lundgaard, A.; Munk Nielsen, M.; Pilegaard, H. PGC-1α Is Required for Exercise- and Exercise Training-Induced UCP1 Up-Regulation in Mouse White Adipose Tissue. PLoS ONE 2013, 8, e64123. [Google Scholar] [CrossRef]
- Perry, C.G.R.; Lally, J.; Holloway, G.P.; Heigenhauser, G.J.F.; Bonen, A.; Spriet, L.L. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J. Physiol. 2010, 588, 4795–4810. [Google Scholar] [CrossRef]
- Chapman, M.A.; Arif, M.; Emanuelsson, E.B.; Reitzner, S.M.; Lindholm, M.E.; Mardinoglu, A.; Sundberg, C.J. Skeletal Muscle Transcriptomic Comparison between Long-Term Trained and Untrained Men and Women. Cell Rep. 2020, 31, 107808. [Google Scholar] [CrossRef]
- Garritson, J.D.; Boudina, S. The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling. Front. Physiol. 2021, 12, 772894. [Google Scholar] [CrossRef]
- Sam, S. Differential effect of subcutaneous abdominal and visceral adipose tissue on cardiometabolic risk. Horm. Mol. Biol. Clin. Investig. 2018, 33, 20180014. [Google Scholar] [CrossRef]
- Basu, A.; Basu, R.; Shah, P.; Vella, A.; Rizza, R.A.; Jensen, M.D. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am. J. Physiol. Metab. 2001, 280, E1000–E1006. [Google Scholar] [CrossRef]
- Ahmad, B.; Vohra, M.S.; Saleemi, M.A.; Serpell, C.J.; Fong, I.L.; Wong, E.H. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie 2021, 184, 26–39. [Google Scholar] [CrossRef]
- Trayhurn, P.; Beattie, J.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 2001, 60, 329–339. [Google Scholar] [CrossRef]
- Aleksandrova, K.; Mozaffarian, D.; Pischon, T. Addressing the Perfect Storm: Biomarkers in Obesity and Pathophysiology of Cardiometabolic Risk. Clin. Chem. 2018, 64, 142–153. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef]
- Caleyachetty, R.; Thomas, G.N.; Toulis, K.A.; Mohammed, N.; Gokhale, K.M.; Balachandran, K.; Nirantharakumar, K. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J. Am. Coll. Cardiol. 2017, 70, 1429–1437. [Google Scholar] [CrossRef]
- Kolahdouzi, S.; Talebi-Garakani, E.; Hamidian, G.; Safarzade, A. Exercise training prevents high-fat diet-induced adipose tissue remodeling by promoting capillary density and macrophage polarization. Life Sci. 2019, 220, 32–43. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef]
- Tremmel, M.; Gerdtham, U.G.; Nilsson, P.M.; Saha, S. Economic burden of obesity: A systematic literature review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Ogasawara, J.; Kizaki, T.; Sato, S.; Ishibashi, Y.; Takahashi, M.; Kobayashi, O.; Oh-ishi, S.; Nagasawa, J.; Takahashi, K.; et al. The Effects of Exercise Training on Obesity-Induced Dysregulated Expression of Adipokines in White Adipose Tissue. Int. J. Endocrinol. 2013, 2013, 801743. [Google Scholar] [CrossRef] [PubMed]
- Ludzki, A.C.; Schleh, M.W.; Krueger, E.M.; Taylor, N.M.; Ryan, B.J.; Baldwin, T.C.; Gillen, J.B.; Ahn, C.; Varshney, P.; Horowitz, J.F. Inflammation and metabolism gene sets in subcutaneous abdominal adipose tissue are altered 1 hour after exercise in adults with obesity. J. Appl. Physiol. 2021, 131, 1380–1389. [Google Scholar] [CrossRef]
- Wang, W.; Yang, K.; Wang, S.; Zhang, J.; Shi, Y.; Zhang, H.; Jin, D.; Gu, R.; Zeng, Q.; Hua, Q. The sex-specific influence of FTO genotype on exercise intervention for weight loss in adult with obesity. Eur. J. Sport Sci. 2022, 22, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.C.; Fattor, J.A.; Horning, M.A.; Faghihnia, N.; Johnson, M.L.; Mau, T.L.; Luke-Zeitoun, M.; Brooks, G.A. Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J. Physiol. 2007, 584, 963–981. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Varghese, M.; Singer, K. Gender and Sex Differences in Adipose Tissue. Curr. Diabetes Rep. 2018, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Zore, T.; Palafox, M.; Reue, K. Sex differences in obesity, lipid metabolism, and inflammation—A role for the sex chromosomes? Mol. Metab. 2018, 15, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Nigro, P.; Middelbeek, R.J.W.; Alves, C.R.R.; Rovira-Llopis, S.; Ramachandran, K.; Rowland, L.A.; Møller, A.B.; Takahashi, H.; Alves-Wagner, A.B.; Vamvini, M.; et al. Exercise Training Promotes Sex-Specific Adaptations in Mouse Inguinal White Adipose Tissue. Diabetes 2021, 70, 1250–1264. [Google Scholar] [CrossRef] [PubMed]
- González-Jurado, J.A.; Suárez-Carmona, W.; López, S.; Sánchez-Oliver, A.J. Changes in Lipoinflammation Markers in People with Obesity after a Concurrent Training Program: A Comparison between Men and Women. Int. J. Environ. Res. Public Health 2020, 17, 6168. [Google Scholar] [CrossRef] [PubMed]
- Borg, E.; Kaijser, L. A comparison between three rating scales for perceived exertion and two different work tests. Scand. J. Med. Sci. Sports 2006, 16, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Frazee, K.; Dube, J.; Andreacci, J. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med. Sci. Sports Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Simón Mora, R.; Sánchez-Oliver, A.J.; Suárez-Carmona, W.; González-Jurado, J.A. Effect of a physical exercise program on physical fitness and visceral fat in people with obesity. Retos 2020, 2041, 723–730. [Google Scholar] [CrossRef]
- Chen, L.; Bai, J.; Li, Y. The Change of Interleukin-6 Level-Related Genes and Pathways Induced by Exercise in Sedentary Individuals. J. Interf. Cytokine Res. 2020, 40, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, R.; Rahim, H.A.; Ahmed, J.K. Decreased inflammatory gene expression accompanies the improvement of liver enzyme and lipid profile following aerobic training and vitamin D supplementation in T2DM patients. BMC Endocr. Disord. 2022, 22, 245. [Google Scholar] [CrossRef] [PubMed]
- Roh, H.-T.; Cho, S.-Y.; So, W.-Y. A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflamma-tion and Neurotrophic Factors in Elderly Women with Obesity. J. Clin. Med. 2020, 9, 842. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Yin, L.; Wang, X. Central and peripheral leptin resistance in obesity and improvements of exercise. Horm. Behav. 2021, 133, 105006. [Google Scholar] [CrossRef] [PubMed]
- Polak, J.; Klimcakova, E.; Moro, C.; Viguerie, N.; Berlan, M.; Hejnova, J.; Richterova, B.; Kraus, I.; Langin, D.; Stich, V. Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor α in obese women. Metab. Clin. Exp. 2006, 55, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Bharath, L.P.; Choi, W.W.; Cho, J.M.; Skobodzinski, A.A.; Wong, A.; Sweeney, T.E.; Park, S.Y. Combined resistance and aerobic exercise training reduces insulin resistance and central adiposity in adolescent girls who are obese: Randomized clinical trial. Eur. J. Appl. Physiol. 2018, 118, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.L.; Foster-Schubert, K.E.; Makar, K.W.; Kratz, M.; Hagman, D.; Schur, E.A.; Habermann, N.; Horton, M.; Abbenhardt, C.; Kuan, L.Y.; et al. Gene expression changes in adipose tissue with diet-and/or exercise-induced weight loss. Cancer Prevent. Res. 2013, 6, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sun, Q.; Chen, W.; Gao, Y.; Ye, J.; Chen, Y.; Wang, T.; Gao, L.; Liu, Y.; Yang, Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J. Pharm. Anal. 2024, 14, 100913. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zuo, F.; Zhao, J.; Nian, X.; Shi, L.; Xu, Y.; Huang, J.; Kazumi, T.; Wu, B. Relationships of adiponectin to regional adiposity, insulin sensitivity, serum lipids, and inflammatory markers in sedentary and endurance-trained Japanese young women. Front. Endocrinol. 2023, 14, 1097034. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Kim, K. Role of exercise-induced adiponectin activation on obese and diabetic individuals. Exerc. Sci. 2020, 29, 208–213. [Google Scholar] [CrossRef]
- Mallardo, M.; D’Alleva, M.; Lazzer, S.; Giovanelli, N.; Graniero, F.; Billat, V.; Fiori, F.; Marinoni, M.; Parpinel, M.; Daniele, A.; et al. Improvement of adiponectin in relation to physical performance and body composition in young obese males subjected to twenty-four weeks of training programs. Heliyon 2023, 9, e15790. [Google Scholar] [CrossRef] [PubMed]
- Senkus, K.E.; Crowe-White, K.M.; Bolland, A.C.; Locher, J.L.; Ard, J.D. Changes in adiponectin:leptin ratio among older adults with obesity following a 12-month exercise and diet intervention. Nutr. Diabetes 2022, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M.; Bullen, J.W., Jr.; Lee, J.H.; Kralisch, S.; Fasshauer, M.; Klöting, N.; Niebauer, J.; Schön, M.R.; Williams, C.J.; Mantzoros, C.S. Circulating Adiponectin and Expression of Adiponectin Receptors in Human Skeletal Muscle: Associations with Metabolic Parameters and Insulin Resistance and Regulation by Physical Training. J. Clin. Endocrinol. Metab. 2006, 91, 2310–2316. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, V.B.; Jorett, A.E.; Marchetti, C.M.; Gonzalez, F.; Phillips, S.A.; Ciaraldi, T.P.; Kirwan, J.P. Enhanced adiponectin multimer ratio and skeletal muscle adiponectin receptor expression following exercise training and diet in older insulin-resistant adults. Am. J. Physiol. Metab. 2007, 293, E421–E427. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M.; Williams, C.J.; Klöting, N.; Hsi, A.; Ruschke, K.; Oberbach, A.; Fasshauer, M.; Berndt, J.; Schön, M.R.; Wolk, A.; et al. Gene expression of adiponectin receptors in human visceral and subcutaneous adipose tissue is related to insulin resistance and metabolic parameters and is altered in response to physical training. Diabetes Care 2007, 30, 3110–3115. [Google Scholar] [CrossRef] [PubMed]
- Za’don, N.H.A.; Kamal, A.F.M.; Ismail, F.; Othman, S.I.T.; Appukutty, M.; Salim, N.; Fauzi, N.F.M.; Ludin, A.F.M. High-intensity interval training induced PGC-1α and Adipor1 gene expressions and improved insulin sensitivity in obese individuals. Med. J. Malays. 2019, 74, 461–467. [Google Scholar]
- De Carvalho, F.G.; Brandao, C.F.C.; Batitucci, G.; Souza, A.D.O.; Ferrari, G.D.; Alberici, L.C.; Muñoz, V.R.; Pauli, J.R.; De Moura, L.P.; Ropelle, E.R.; et al. Taurine supplementation associated with exercise increases mitochondrial activity and fatty acid oxidation gene expression in the subcutaneous white adipose tissue of obese women. Clin. Nutr. 2021, 40, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Zha, D.; Wu, X.; Gao, P. Adiponectin and Its Receptors in Diabetic Kidney Disease: Molecular Mechanisms and Clinical Potential. Endocrinology 2017, 158, 2022–2034. [Google Scholar] [CrossRef]
- Dietrich, S.; Jacobs, S.; Zheng, J.S.; Meidtner, K.; Schwingshackl, L.; Schulze, M.B. Gene-lifestyle interaction on risk of type 2 diabetes: A systematic review. Obes. Rev. 2019, 20, 1557–1571. [Google Scholar] [CrossRef] [PubMed]
- Mora-García, G.; Ruiz-Díaz, M.S.; Espitia-Almeida, F.; Gómez-Camargo, D. Variations in ADIPOR1 But Not ADIPOR2 are Associated With Hypertriglyceridemia and Diabetes in an Admixed Latin American Population. Rev. Diabet. Stud. 2017, 14, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, K.; Liao, X.; Hu, H.; Chen, L.; Meng, L.; Gao, W.; Li, Q. Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy? Front. Pharmacol. 2021, 12, 760581. [Google Scholar] [CrossRef] [PubMed]
- Zeibig, J.; Karlic, H.; Lohninger, A.; Dumsgaard, R.; Smekal, G. Do blood cells mimic gene expression profile alterations known to occur in muscular adaptation to endurance training? Eur. J. Appl. Physiol. 2005, 95, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Shahouzehi, B.; Masoumi-Ardakani, Y.; Nazari-Robati, M.; Aminizadeh, S. The Effect of High-intensity Interval Training and L-carnitine on the Expression of Genes Involved in Lipid and Glucose Metabolism in the Liver of Wistar Rats. Braz. Archiv. Biol. Technol. 2023, 66, e23220100. [Google Scholar] [CrossRef]
- Günaşti, Ö.; Özdemir, Ç.; Özgünen, K.T.; Yilmaz, M.B.; Öksüz, H.; Zorludemir, S.; Kurdak, S.S. The effects of exercise on skeletal and heart muscle citrate synthase and carnitine palmitoyltransferase mRNA expressions in high-calorie fed rats. Gen. Physiol. Biophys. 2021, 40, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Encabo, P.; Maldonado, G.; Valadés, D.; Ferragut, C.; Pérez-López, A. The Role of Exercise Training on Low-Grade Systemic Inflammation in Adults with Overweight and Obesity: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 13258. [Google Scholar] [CrossRef] [PubMed]
- Del Rosso, S.; Baraquet, M.L.; Barale, A.; Defagó, M.D.; Tortosa, F.; Perovic, N.R.; Aoki, M.P. Long-term effects of different exercise training modes on cytokines and adipokines in individuals with overweight/obesity and cardiometabolic diseases: A systematic review, meta-analysis, and meta-regression of randomized controlled trials. Obes. Rev. 2023, 24, e13564. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Marandi, S.M.; Hovsepian, V.; Kazemi, M.; Esmaeil, N. Resistance exercise training augments the immunomodulatory adaptations to aerobic high-intensity interval training. Eur. J. Sport Sci. 2023, 23, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
- Klimcakova, E.; Polak, J.; Moro, C.; Hejnova, J.; Majercik, M.; Viguerie, N.; Berlan, M.; Langin, D.; Stich, V. Dynamic strength training improves insulin sensitivity without altering plasma levels and gene expression of adipokines in subcutaneous adipose tissue in obese men. J. Clin. Endocrinol. Metab. 2006, 91, 5107–5112. [Google Scholar] [CrossRef] [PubMed]
- Landen, S.; Voisin, S.; Craig, J.M.; McGee, S.L.; Lamon, S.; Eynon, N. Genetic and epigenetic sex-specific adaptations to endurance exercise. Epigenetics 2019, 14, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Lebeck, J.; Østergård, T.; Rojek, A.; Füchtbauer, E.M.; Lund, S.; Nielsen, S.; Praetorius, J. Gender-specific effect of physical training on AQP7 protein expression in human adipose tissue. Acta Diabetol. 2012, 49, S215–S226. [Google Scholar] [CrossRef] [PubMed]
- Diniz, T.G.; Silva, A.S.; dos Santos Nunes, M.K.; Ribeiro, M.D.; Filho, J.M.; do Nascimento, R.A.F.; Gomes, C.N.A.P.; Evangelista, I.W.D.Q.; de Oliveira, N.F.P.; Persuhn, D.C. Physical Activity Level Influences MTHFR Gene Methylation Profile in Diabetic Patients. Front. Physiol. 2021, 11, 618672. [Google Scholar] [CrossRef] [PubMed]
- Da Mota, G.R.; Orsatti, F.L.; Delbin, M.A.; Zanesco, A. Resistance exercise improves metabolic parameters and changes adipocyte-derived leptin: A comparison between genders in untrained adults. Mot. Rev. De Educ. Física 2016, 22, 217–222. [Google Scholar] [CrossRef]
- Yu, N.; Ruan, Y.; Gao, X.; Sun, J. Systematic Review and Meta-Analysis of Randomized, Controlled Trials on the Effect of Exercise on Serum Leptin and Adiponectin in Overweight and Obese Individuals. Horm. Metab. Res. 2017, 49, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Becic, T.; Studenik, C.; Hoffmann, G. Exercise Increases Adiponectin and Reduces Leptin Levels in Prediabetic and Diabetic Individuals: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Med. Sci. 2018, 6, 97. [Google Scholar] [CrossRef] [PubMed]
ALL (n = 29) | ||||||
Means | SD | CI (95%) LL | CI (95%) UL | Minimum | Maximum | |
Age (year) | 46.10 | 6.94 | 43.46 | 48.74 | 30.00 | 60.00 |
Hight (meter) | 1.68 | 0.11 | 1.64 | 1.72 | 1.44 | 1.90 |
Weight (kg) | 100.86 | 22.52 | 92.29 | 109.43 | 62.20 | 147.00 |
BMI (kg/m2) | 35.47 | 5.44 | 33.40 | 37.54 | 28.02 | 49.69 |
BFM (kg) | 43.95 | 13.18 | 38.93 | 48.96 | 24.00 | 79.30 |
PBF (%) | 43.40 | 6.59 | 40.89 | 45.90 | 28.00 | 53.90 |
SMM (kg) | 31.57 | 7.57 | 28.69 | 34.45 | 20.10 | 46.40 |
SMM (%) | 31.50 | 3.92 | 30.01 | 32.99 | 25.25 | 40.65 |
FFM (kg) | 56.61 | 12.83 | 51.73 | 61.49 | 37.40 | 82.30 |
FFM (%) | 56.60 | 6.57 | 54.10 | 59.10 | 46.05 | 71.96 |
VFA (cm2) | 204.82 | 49.14 | 186.13 | 223.51 | 106.80 | 316.40 |
Systolic PA (mmHg) | 133.10 | 17.15 | 126.57 | 139,62 | 94.00 | 163.00 |
Diastolic PA (mmHg) | 84.31 | 12.67 | 79.49 | 89.13 | 59.00 | 119.00 |
Glycaemia (mg/dL) | 104.59 | 24.73 | 95.18 | 113.99 | 55.00 | 175.00 |
FEMALE (n = 13) | ||||||
Mean | SD | CI (95%) LL | CI (95%) UL | Minimum | Maximum | |
Age (year) | 45.81 | 7.78 | 41.67 | 49.96 | 30.00 | 60.00 |
Hight (meter) | 1.61 | 0.08 | 1.57 | 1.66 | 1.44 | 1.74 |
Weight (kg) | 93.19 | 23.42 | 80.71 | 105.67 | 62.20 | 147.00 |
BMI (kg/m2) | 35.46 | 6.30 | 32.10 | 38.81 | 28.02 | 49.69 |
BFM (kg) | 44.43 | 14.84 | 36.52 | 52.34 | 24.80 | 79.30 |
PBF (%) | 47.11 | 4.73 | 44.58 | 49.63 | 39.00 | 53.90 |
SMM (kg) | 26.66 | 5.42 | 23.77 | 29.55 | 20.10 | 38.30 |
SMM (%) | 29.09 | 2.53 | 27.75 | 30.44 | 25.25 | 33.29 |
FFM (kg) | 48.38 | 9.25 | 43.45 | 53.30 | 37.40 | 67.70 |
FFM (%) | 52.91 | 4.74 | 50.39 | 55.43 | 46.05 | 61.03 |
VFA (cm2) | 208.71 | 50.47 | 181.81 | 235.60 | 129.90 | 316.40 |
Systolic PA (mmHg) | 125.25 | 16.25 | 116.59 | 133.90 | 94.00 | 158.00 |
Diastolic PA (mmHg) | 79.81 | 14.44 | 72.11 | 87.50 | 59.00 | 119.00 |
Glycaemia (mg/dL) | 105.44 | 21.62 | 93.91 | 116.96 | 67.00 | 159.00 |
MALE (n = 16) | ||||||
Mean | SD | CI (95%) LL | CI (95%) UL | Minimum | Maximum | |
Age (year) | 46.46 | 6.04 | 42.81 | 50.11 | 38.00 | 56.00 |
Hight (meter) | 1.76 | 0.08 | 1.71 | 1.81 | 1.60 | 1.90 |
Weight (kg) | 110.31 | 17.97 | 99.45 | 121.16 | 85.60 | 140.00 |
BMI (kg/m2) | 35.49 | 4.42 | 32.82 | 38.16 | 28.27 | 42.30 |
BFM (kg) | 43.35 | 11.37 | 36.48 | 50.23 | 24.00 | 58.40 |
PBF (%) | 38.83 | 5.69 | 35.39 | 42.27 | 28.00 | 48.80 |
SMM (kg) | 37.62 | 5.01 | 34.59 | 40.64 | 28.60 | 46.40 |
SMM (%) | 34.46 | 3.27 | 32.48 | 36.43 | 28.71 | 40.65 |
FFM (kg) | 66.74 | 8.71 | 61.48 | 72.00 | 51.00 | 82.30 |
FFM (%) | 61.14 | 5.66 | 57.72 | 64.56 | 51.20 | 71.96 |
VFA (cm2) | 200.04 | 49.05 | 170.40 | 229.68 | 106.80 | 253.70 |
Systolic PA (mmHg) | 142.76 | 17.71 | 134.81 | 150.72 | 116.00 | 163.00 |
Diastolic PA (mmHg) | 89.85 | 7.33 | 85.41 | 94.28 | 82.00 | 105.00 |
Glycaemia (mg/dL) | 103.54 | 28.98 | 86.03 | 121.05 | 55.00 | 175.00 |
Target | Expressed Molecule Role | GenBank Accession | Direction | Sequence (5′→3′) |
---|---|---|---|---|
ADIPOR2 | Adiponectin Receptor Anti-inflammatory | NM_024551 | Forward Reverse | ACCAAGGAGATTTGGAGCCC GGACATGCCCATAAAGCCCT |
CPT2 | Beta-oxidation of long-chain fatty acids in mitochondria. Anti-inflammatory | NM_000098 | Forward Reverse | CATACAAGCTACATTTCGGGACC AGCCCGGAGTGTCTTCAGAA |
IFNg | Immune regulation Pro-inflammatory | NM_000619 | Forward Reverse | TCGGTAACTGACTTGAATGTCCA TCGCTTCCCTGTTTTAGCTGC |
Leptin | Anorexigenic Pro-inflammatory | NM_000230 | Forward Reverse | AAACGCAAAGGGCTGAAAGC AGATCGCAGTCACCAGTGTG |
TNFa | Regulation of multiple mechanisms of the immune response. Pro-inflammatory | NM_021833 | Forward Reverse | CAATCACCGCTGTGGTAAAAAC GTAGAGGCCGATCCTGAGAGA |
RPS18s | house-keeping | NM_022551 | Forward Reverse | CGATGGGCGGCGGAAAATA TTGGTGAGGTCAATGTCTGCT |
Pre-Exercise | Post-Exercise | ||||
---|---|---|---|---|---|
Mean ± SD | CI (95%) | Mean ± SD | IC (95%) | p-Value § | |
ADIPOR2 | 1 ± 1.825 | (−0.103–2.103) | 0.260 ± 0.284 | (0.069–0.451) | 0.16 |
Leptin | 1 ± 0.874 | (0.472–1.528) | 0.577 ± 0.482 | (0.253–0.900) | 0.135 |
IFNg | 1 ± 1.476 | (0.108–1.892) | 0.250 ± 0.241 | (0.088–0.411) | 0.083 |
TNFa | 1 ± 1.116 | (0.326–1.674) | 0.922 ± 1.112 | (0.245–1.739) | 0.986 |
CPT2 | 1 ± 0.537 | (0.676–1.324) | 0.924 ± 0.443 | (0.626–1.221) | 0.695 |
Pre-Exercise | Post-Exercise | ||||
---|---|---|---|---|---|
Mean ± SD | CI (95%) | Mean ± SD | IC (95%) | p-Value § | |
ADIPOR2 | 1 ± 1.504 | (0.167–1.833) | 0.291 ± 0.320 | (0.097–0.484) | 0.084 |
Leptin | 1 ± 1.120 | (0.380–1.620) | 0.408 ± 0.321 | (0.214–0.602) | 0.057 |
INFg | 1 ± 1.443 | (0.201–1.799) | 0.509 ± 0.674 | (0.102–0.916) | 0.244 |
TNFa | 1 ± 1.875 | (−0.039–2.039) | 0.616 ± 0.504 | (0.311–0.920) | 0.458 |
CPT2 | 1 ± 0.493 | (0.727–1.273) | 0.939 ± 0.484 | (0.646–1.231) | 0.773 |
Pre-Exercise | Post-Exercise | ||||
---|---|---|---|---|---|
Mean ± SD | CI (95%) | Mean ± SD | IC (95%) | p-Value § | |
ADIPOR2 | 1 ± 1.609 | (0.376–1.624) | 0.279 ± 0.308 | (0.149–0.409) | 0.028 |
Leptin | 1 ± 1.295 | (0.498–1.502) | 0.448 ± 0.401 | (0.279–0.618) | 0.041 |
INFg | 1 ± 1.529 | (0.407–1.593) | 0.351 ± 0.411 | (0.177–0.524) | 0.040 |
TNFa | 1 ± 1.633 | (0.367–1.633) | 0.768 ± 0.766 | (0.445–1.092) | 0.516 |
CPT2 | 1 ± 0.517 | (0.799–1.201) | 0.946 ± 0.473 | (0.750–1.141) | 0.685 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis, P.; Ezequiel-Rodriguez, A.; Sánchez-Oliver, A.J.; Suarez-Carmona, W.; Lopez-Martín, S.; García-Muriana, F.J.; González-Jurado, J.A. Changes in the Expression of Inflammatory Genes Induced by Chronic Exercise in the Adipose Tissue: Differences by Sex. Sports 2024, 12, 184. https://doi.org/10.3390/sports12070184
Sanchis P, Ezequiel-Rodriguez A, Sánchez-Oliver AJ, Suarez-Carmona W, Lopez-Martín S, García-Muriana FJ, González-Jurado JA. Changes in the Expression of Inflammatory Genes Induced by Chronic Exercise in the Adipose Tissue: Differences by Sex. Sports. 2024; 12(7):184. https://doi.org/10.3390/sports12070184
Chicago/Turabian StyleSanchis, Paula, Aida Ezequiel-Rodriguez, Antonio Jesús Sánchez-Oliver, Walter Suarez-Carmona, Sergio Lopez-Martín, Francisco José García-Muriana, and José Antonio González-Jurado. 2024. "Changes in the Expression of Inflammatory Genes Induced by Chronic Exercise in the Adipose Tissue: Differences by Sex" Sports 12, no. 7: 184. https://doi.org/10.3390/sports12070184
APA StyleSanchis, P., Ezequiel-Rodriguez, A., Sánchez-Oliver, A. J., Suarez-Carmona, W., Lopez-Martín, S., García-Muriana, F. J., & González-Jurado, J. A. (2024). Changes in the Expression of Inflammatory Genes Induced by Chronic Exercise in the Adipose Tissue: Differences by Sex. Sports, 12(7), 184. https://doi.org/10.3390/sports12070184