Prevalence of Specific Mood Profile Clusters among Elite and Youth Athletes at a Brazilian Sports Club
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement of Mood
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Data Screening
3.2. “Right Now” vs. “Past Week” Mood Scores
3.3. Cluster Analysis
3.4. Cluster Strength
3.5. Between-Group Differences in Cluster Prevalence
4. Discussion
4.1. Limitations
4.2. Conclusions
4.3. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henriksen, K.; Larsen, C.H.; McCann, S.; Moesch, K.; Parham, W.; Schinke, R.J.; Terry, P.C. Updated consensus statement on improving the mental health of high-performance athletes. In Mental Health in Sport and Physical Activity; Schinke, R., Ed.; Routledge: London, UK, 2024; pp. 7–20. [Google Scholar] [CrossRef]
- Reardon, C.L.; Hainline, B.; Aron, C.M.; Baron, D.; Baum, A.L.; Bindra, A.; Budgett, R.; Campriani, N.; Castaldelli-Maia, J.M.; Currie, A.; et al. Mental health in elite athletes: International Olympic Committee consensus statement. Br. J. Sports Med. 2019, 53, 667–699. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.; Wise, N. Introduction: Sport and social transformation in Brazil. Bull. Lat. Am. Res. 2018, 38, 265–266. [Google Scholar] [CrossRef]
- Mello, J.; Pedretti, A.; Caporal, G.; Mahique, J.; Ferreira, A.; Reppold-Filho, A.; Gaya, A. Secular trend of sports practice of Brazilian children and young people in the decade of mega-sport events. J. Hum. Sport Exerc. 2022, 17, 1–9. [Google Scholar] [CrossRef]
- Mazzei, L.C.; Meira, T.D.; Bastos, F.D.; Bohme, M.T.; Bosscher, V.D. High performance sport in Brazil: Structure and policies comparison with the international context. Gestión Politica Pública 2015, 24, 83–111. [Google Scholar]
- Brocherie, F.; Beard, A. All alone we go faster, together we go further: The necessary evolution of professional and elite sporting environments to bridge the gap between research and practice. Front. Sports Act. Living 2021, 2, e631147. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.; Collins, D. Interdisciplinary practice in performance sport: A scoping review of evidence of collaboration. Eur. J. Sports Sci. 2023, 23, 1877–1891. [Google Scholar] [CrossRef] [PubMed]
- Purcell, R.; Pilkington, V.; Carberry, S.; Reid, D.; Gwyther, K.; Hall, K.; Deacon, A.; Manon, R.; Walton, C.C.; Rice, S. An evidence-informed framework to promote mental wellbeing in elite sport. Front. Psychol. 2022, 13, e780359. [Google Scholar] [CrossRef]
- Walton, C.C.; Rice, S.; Gao, C.X.; Butterworth, M.; Clements, M.; Purcell, R. Gender diferences in mental health symptoms and risk factors in Australian elite athletes. BMJ Open Sport Exerc. Med. 2021, 7, e000984. [Google Scholar] [CrossRef] [PubMed]
- Gouttebarge, V.; Castaldelli-Maia, J.M.; Gorczynski, P.; Hainline, B.; Hitchcock, M.E.; Kerkhoffs, G.M.; Rice, S.M.; Reardon, C.L. Occurrence of mental health symptoms and disorders in current and former elite athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2019, 53, 700–706. [Google Scholar] [CrossRef]
- Lochbaum, M.; Zanatta, T.; Kirschling, D.; May, E. The Profile of Moods States and athletic performance: A meta-analysis of published studies. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 50–70. [Google Scholar] [CrossRef]
- Morgan, W.P. Selected psychological factors limiting performance: A mental health model. In Limits of Human Performance; Clarke, D.H., Eckert, H.M., Eds.; Human Kinetics: Champaign, IL, USA, 1985; pp. 70–80. [Google Scholar]
- Raglin, J.S. Psychological factors in sport performance. Sports Med. 2001, 31, 875–890. [Google Scholar] [CrossRef] [PubMed]
- Rohlfs, I.C.P.M.; Rotta, T.M.; Luft, C.D.B.; Andrade, A.; Krebs, R.J.; Carvalho, T.D. Brunel Mood Scale (BRUMS): An instrument for early detection of overtraining syndrome. Rev. Bras. Med. Esporte 2008, 14, 176–181. [Google Scholar] [CrossRef]
- Beedie, C.J.; Lane, A.M.; Udberg, R.; Terry, P.C. The 4R model of mood and emotion for sustainable mental health in organisational settings. Sustainability 2022, 14, 11670. [Google Scholar] [CrossRef]
- Beedie, C.; Terry, P.; Lane, A. Distinctions between emotion and mood. Cogn. Emot. 2005, 19, 847–878. [Google Scholar] [CrossRef]
- Samełko, A.; Guszkowska, M. Affective states and performance outcomes—The findings of preliminary research involving pentathletes. Pol. J. Sport Tour. 2016, 23, 21–24. [Google Scholar] [CrossRef]
- Posner, J.; Russell, J.A.; Peterson, B.S. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 2005, 17, 715–734. [Google Scholar] [CrossRef] [PubMed]
- McNair, D.M.; Lorr, M.; Droppleman, L.F. Manual for the Profile of Mood States; Educational and Industrial Testing Services: San Diego, CA, USA, 1971. [Google Scholar]
- Terry, P.C.; Lane, A.M.; Fogarty, G.J. Construct validity of the Profile of Mood States–Adolescents for use with adults. Psychol. Sport Exer. 2003, 4, 125–139. [Google Scholar] [CrossRef]
- Rohlfs, I.C.P.M.; Carvalho, T.; Rotta, T.M.; Krebs, R.J. Application of mood assessment instruments in the detection of overtraining syndrome. Rev. Bras. Med. Esporte 2004, 10, 111–116. [Google Scholar] [CrossRef]
- Baroni, D.; Silva, M.; Marsillac, P.; Tomé, O.; Guimarães, T. Exercício físico, rendimento acadêmico e sintomas de overtraining em estudantes de medicina. Braz. J. Health Rev. 2020, 3, 14602–14613. [Google Scholar] [CrossRef]
- Marques, L.E.; Brandão, M.R.F. Training volume, perceived exertion, and mood states during a training macrocycle. Rev. Bras. Psicol. Esporte. 2010, 3, 63–78. [Google Scholar] [CrossRef]
- Brandt, R.; Viana, M.D.S.; Steffens, R.D.A.K.; Silva, R.B.; Sties, S.W.; Gonzáles, A.I.; Carvalho, T.D.; Andrade, A. Profile of mood and associated factors among participants of a program of cardiopulmonary and metabolic rehabilitation. J. Braz. Psiquiatr. 2012, 61, 72–77. [Google Scholar] [CrossRef]
- Sties, S.W.; Gonzáles, A.I.; Netto, A.S.; Wittkopf, P.G.; Lima, D.P.; Carvalho, T. Validation of the Brunel Mood Scale for cardiac rehabilitation program. Braz. J. Sports Med. 2014, 20, 281–284. [Google Scholar] [CrossRef]
- Andrade, A.; Correia, C.K.; Cruz, W.M.D.; Bevilacqua, G. Acute effect of exergames on children’s mood states during physical education classes. Games Health J. 2019, 8, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Cruz, W.M.; Correia, C.K.; Santos, A.L.G.; Bevilacqua, G.G. Effect of practice exergames on the mood states and self-esteem of elementary school boys and girls during physical education classes: A cluster-randomized controlled natural experiment. PLoS ONE 2020, 15, e0232392. [Google Scholar] [CrossRef]
- Andrade, A.; Silva, R.B.; Flores Junior, M.A.; Rosa, C.B.; Dominski, F.H. Changes in mood states of Brazilian jiu-jitsu athletes during training and competition. Sport Sci. Health 2019, 15, 469–475. [Google Scholar] [CrossRef]
- Bevilacqua, G.G.; Viana, M.S.; Gutierres Filho, P.J.B.; da Silveira Borges, V.; Brandt, R. Estados de Humor e Resultado Esportivo de Uma Equipe ao Longo da Segunda Fase da Liga Nacional de Futsal. Psicol. Teor. Pesqui. 2019, 35, e3537. [Google Scholar] [CrossRef]
- Botelho, R.; Abad, C.C.; Spadari, R.C.; Winckler, C.; Garcia, M.C.; Guerra, R.L. Psychophysiological stress markers during preseason among elite female soccer players. J. Strength Cond. Res. 2022, 36, 1648–1654. [Google Scholar] [CrossRef]
- Brandt, R.; Viana, M.S.; Crocetta, T.B.; Andrade, A. Association between mood states and performance of Brazilian elite sailors: Winners vs. non-winners. Cult. Cienc. Deporte 2016, 11, 119–125. [Google Scholar] [CrossRef]
- Detanico, D.; Kons RLFukuda, D.H.; Teixeira, A.S. Physical performance in young judo athletes: Influence of somatic maturation, growth, and training experience. Res. Q. Exerc. Sport 2020, 91, 425–432. [Google Scholar] [CrossRef]
- Wilke, C.F.; Wanner, S.P.; Santos, W.H.M.; Penna, E.M.; Ramos, G.P.; Nakamura, F.Y.; Duffield, R. Influence of faster and slower recovery-profile classifications, self-reported sleep, acute training load, and phase of the microcycle on perceived recovery in futsal players. Int. J. Sports Physiol. Perform. 2020, 15, 648–653. [Google Scholar] [CrossRef]
- Wilke, C.F.; Wanner, S.P.; Penna, E.M.; Maia-Lima, A.; Santos, W.H.M.; Müller-Ribeiro, F.C.; Mendes, T.T.; Bruzzi, R.S.; Ramos, G.P.; Nakamura, F.Y.; et al. Preseason training improves perception of fatigue and recovery from a futsal training session. Int. J. Sports Physiol. Perform. 2021, 16, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Steffens, R.D.A.K.; Sieczkowska, S.M.; Coimbra, D.R.; Vilarino, G.T. Acute effect of strength training on mood of patients with fibromyalgia syndrome. Reumatismo 2019, 71, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Steffens, R.; Vilarino, G.T.; Miranda, R.; Benetti, M.; Coimbra, D.R. Preferred exercise and mental health of the patients with fibromyalgia syndrome. Complement. Ther. Clin. Pract. 2020, 40, 101–195. [Google Scholar] [CrossRef] [PubMed]
- Brandt, R.; Fonseca, A.B.P.; Oliveira, L.G.A.D.; Steffens, R.D.A.K.; Viana, M.D.S.; Andrade, A. Perfil de humor de mulheres com fibromialgia [Mood profile of women with fibromyalgia]. J. Bras. Psiquiatr. 2011, 60, 216–220. [Google Scholar] [CrossRef]
- Andrade, A.; Bevilacqua, G.G.; Coimbra, D.R.; Pereira, F.S.; Brandt, R. Sleep quality, mood, and performance: A study of elite Brazilian volleyball athletes. J. Sports Sci. Med. 2016, 15, 601–605. [Google Scholar] [PubMed]
- Andrade, A.; Bevilacqua, G.; Casagrande, P.; Brandt, R.; Coimbra, D. Sleep quality associated with mood in elite athletes. Phys. Sportsmed. 2019, 47, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Brandt, R.; Bevilacqua, G.G.; Andrade, A. Perceived sleep quality, mood states, and their relationship with performance among Brazilian elite athletes during a competitive period. J. Strength Cond. Res. 2017, 31, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Noce, F.; de Oliveira Castro, H.; Ferreira, T.S.; Guo, J.; de Andrade, A.G.P.; da Costa, V.T. A 6-month comparison of quality of life and mood states between physically active and sedentary college students. Medicina 2016, 49, 9–16. Available online: https://www.revistas.usp.br/rmrp/article/view/118364/115925 (accessed on 21 April 2024). [CrossRef]
- Zangirolami-Raimundo, J.; Raimundo, R.D.; da Silva, T.D.; de Andrade, P.E.; Benetti, F.A.; da Silva Paiva, L.; do Valle, J.; de Abreu, L.C. Contrasting performance between physically active and sedentary older people playing exergames. Medicine 2019, 98, e14213. [Google Scholar] [CrossRef]
- Rohlfs, I.C.P.d.M.; Noce, F.; Gabbett, T.J.; Wilke, C.; Vido, M.; Terry, V.R.; Terry, P.C. Psychometric Characteristics of the Brazil Mood Scale among Youth and Elite Athletes Using Two Response Time Frames. Sports 2023, 11, 244. [Google Scholar] [CrossRef]
- Roberts, R.J.; Lane, A.M. Mood responses and regulation strategies used during COVID-19 among boxers and coaches. Front. Psychol. 2021, 12, e624119. [Google Scholar] [CrossRef] [PubMed]
- Parsons-Smith, R.L.; Terry, P.C.; Machin, M.A. Identification and description of novel mood profile clusters. Front Psychol. 2017, 8, e1958. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Parsons-Smith, R.L. Mood profiling for sustainable mental health among athletes. Sustainability 2021, 13, 6116. [Google Scholar] [CrossRef]
- Budgett, R. Overtraining syndrome. Br. J. Sports Med. 1990, 24, 231–236. [Google Scholar] [CrossRef]
- Galambos, S.A.; Terry, P.C.; Moyle, G.M.; Locke, S.A. Psychological predictors of injury among elite athletes. Br. J. Sport Med. 2005, 39, 351–354. Available online: https://bjsm.bmj.com/content/39/6/351 (accessed on 21 April 2024). [CrossRef] [PubMed]
- Gouttebarge, V.; Bindra, A.; Blauwet, C.; Campriani, N.; Currie, A.; Engebretsen, L.; Hainline, B.; Kroshus, E.; McDuff, D.; Mountjoy, M.; et al. International Olympic Committee (IOC) Sport Mental Health Assessment Tool 1 (SMHAT-1) and Sport Mental Health Recognition Tool 1 (SMHRT-1): Towards better support of athletes’ mental health. Br. J. Sport Med. 2021, 55, 30–37. [Google Scholar] [CrossRef]
- Reardon, C.L.; Bindra, A.; Blauwet, C.; Budgett, R.; Campriani, N.; Currie, A.; Gouttebarge, V.; McDuff, D.; Mountjoy, M.; Purcell, R.; et al. Mental health management of elite athletes during COVID-19: A narrative review and recommendations. Br. J. Sports Med. 2020. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hashim, H.A.; Hanafi, A.Y.H. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players’ mood states. Asian J. Sports Med. 2011, 2, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Tamminen, K.A.; Kim, J.; Danyluck, C.; McEwen, C.E.; Wagstaff, C.R.D.; Wolf, S.A. The effect of self- and interpersonal emotion regulation on athletes’ anxiety and goal achievement in competition. Psychol. Sport Exerc. 2021, 57, e102034. [Google Scholar] [CrossRef]
- Brandão, R.F.; Correa, M.; Sermarine, M.; Angelo, D.L.; Parsons-Smith, R.L.; Terry, P.C. Psychometric re-evaluation of the Brazil Mood Scale and evidence of mood profile clusters among youth athletes in Brazil. Int. J. Sport Exerc. Psychol. 2021, 19, S183–S184. [Google Scholar] [CrossRef]
- Terry, P.C.; Parsons-Smith, R.L.; Zhang, C.Q.; Si, G.; Chung, P.K. Mood profile clusters among Chinese athletes and nonathletes. Int. J. Sport Exerc. Psychol. 2021, 19, S182–S183. [Google Scholar] [CrossRef]
- Quartiroli, A.; Parsons-Smith, R.L.; Fogarty, G.J.; Kuan, G.; Terry, P.C. Cross-cultural validation of mood profile clusters in a sport and exercise context. Front. Psychol. 2018, 9, e1949. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Parsons-Smith, R.L.; Skurvydas, A.; Lisinskienė, A.; Majauskienė, D.; Valančienė, D.; Cooper, S.; Lochbaum, M. Physical activity and healthy habits influence mood profile clusters in a Lithuanian population. Sustainability 2022, 14, 10006. [Google Scholar] [CrossRef]
- Han, C.; Parsons-Smith, R.L.; Terry, P.C. Mood profiling in Singapore: Cross-cultural validation and potential applications of mood profile clusters. Front. Psychol. 2020, 11, e665. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Parsons-Smith, R.L.; Vlachopoulos, S.P.; Lane, A.M. Mood profile clusters among Greek exercise participants and inactive adults. Science 2024, 6, 18. [Google Scholar] [CrossRef]
- Masumoto, K.; Taishi, N.; Shiozaki, M. Age and gender differences in relationships among emotion regulation, mood, and mental health. Gerontol. Geriatr. Med. 2016, 2, 2333721416637022. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Sanchis, A.; Grau, M.D.; Moliner, A.R.; Morales-Murillo, C.P. Effects of age and gender in emotion regulation of children and adolescentes. Front. Psychol. 2020, 11, e946. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Parsons-Smith, R.L.; King, R.; Terry, V.R. Influence of sex, age, and education on mood profile clusters. PLoS ONE 2021, 16, e0245341. [Google Scholar] [CrossRef]
- Mezzina, R.; Gopikumar, V.; Jenkins, J.; Saraceno, B.; Sashidharan, S.P. Social vulnerability and mental health inequalities in the “Syndemic”: Call for action. Front. Psychiatry 2022, 13, 894370. [Google Scholar] [CrossRef]
- World Health Organization. Risks to Mental Health: An Overview of Vulnerabilities and Risk Factors. Available online: https://www.who.int/publications/m/item/risks-to-mental-health (accessed on 14 May 2024).
- Cruz, M.S.; Silva, E.S.; Jakaite, Z.; Krenzinger, M.; Valiati, L.; Gonçalves, D.; Ribeiro, E.; Heritage, P.; Priebe, S. Experience of neighbourhood violence and mental distress in Brazilian favelas: A cross-sectional household survey. Lancet Glob. Health 2021, 4, e100067. [Google Scholar] [CrossRef]
- Ekkekakis, P. The Measurement of Affect, Mood, and Emotion: A Guide for Health-Behavioral Research; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 29.0; IBM Corp: Armonk, NY, USA, 2022. [Google Scholar]
- Wagstaff, K.; Cardie, C.; Rogers, S.; Schroedl, S. Constrained k-means clustering with background knowledge. Int. Conf. Mach. Learn. 2001, 1, 577–584. Available online: http://www.litech.org/~wkiri/Papers/wagstaff-kmeans-01.pdf (accessed on 1 February 2024).
- Bair, E. Semi-supervised clustering methods. Wiley Interdisc. Rev. Computat. Stat. 2013, 5, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K. Data clustering: 50 years beyond k-means. Pattern Recog. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Nevill, A.M.; Lane, A.M. Why self-report “Likert” scale data should not be log-transformed. J. Sports Sci. 2007, 25, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Leiner, D.J. Too fast, too straight, too weird: Non-reactive indicators for meaningless data in internet surveys. Surv. Res. Meth. 2019, 13, e7403. [Google Scholar] [CrossRef]
- Meisenberg, G.; Williams, A. Are acquiescent and extreme response styles related to low intelligence and education? Pers. Indiv. Diff. 2008, 44, 1539–1550. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; Sage: London, UK, 2009. [Google Scholar]
- World Population Review. Depression Rates by Country. Available online: https://worldpopulationreview.com/country-rankings/depression-rates-by-country (accessed on 1 May 2024).
- Statista. Prevalence of Mental Health Disorders in Brazil from 2010 to 2019. Available online: https://www.statista.com/statistics/1337958/share-people-mental-health-disorders-brazil/ (accessed on 14 May 2024).
- World Health Organization. Mental Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 14 May 2024).
- Chekroud, S.R.; Gueorguieva, R.; Zheutlin, A.B.; Paulus, M.; Krumholz, H.M.; Krystal, J.H.; Chekroud, A.M. Association between physical exercise and mental health in 1.2 million individuals in the USA between 2011 and 2015: A cross-sectional study. Lancet Psychiat. 2018, 5, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Lee, S.; Yon, D.K.; Lee, S.W.; Udeh, R.; McEvoy, M.; Oh, H.; Butler, L.; Keyes, H.; Barnett, Y.; et al. Physical activity and prevention of mental health complications: An umbrella review. Neurosci. Biobehav. Rev. 2024, 160, e105641. [Google Scholar] [CrossRef] [PubMed]
- Bonadiman, C.S.C.; Malta, D.C.; de Azeredo Passos, V.M.; Naghavi, M.; Melo, A.P.S. Depressive disorders in Brazil: Results from the Global Burden of Disease Study 2017. Popul. Health Metr. 2020, 18, e6. [Google Scholar] [CrossRef]
- National Institute of Mental Health. Prevalence of Any Mood Disorder among Adults. Available online: https://www.nimh.nih.gov/health/statistics/any-mood-disorder#:~:text=An%20estimated%209.7%25%20of%20U.S.%20adults%20had%20any,disorder%20at%20some%20time%20in%20their%20lives.%202 (accessed on 15 May 2024).
- Riecher-Rössler, A. Sex and gender differences in mental disorders. Lancet Psychiatry 2016, 4, 8–9. Available online: https://www.thelancet.com/journals/lanpsy/article/PIIS2215-0366(16)30348-0/fulltext (accessed on 24 April 2024). [CrossRef]
- Amin, Z.; Canli, T.; Epperson, C.N. Effect of estrogen-serotonin interactions on mood and cognition. Behav. Cog. Neuro. Rev. 2005, 4, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, A.N.V.; Salimi-Khorshidi, G.; Lai, M.C.; Baron-Cohen, S.; Lombardo, M.V.; Tait, R.J.; Suckling, J. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 2014, 39, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry 2016, 4, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Dorius, S.F.; Firebaugh, G. Trends in global gender inequality. Soc. Force. 2010, 88, 1941–1968. Available online: https://www.jstor.org/stable/40927534 (accessed on 24 April 2024). [CrossRef] [PubMed]
- Stamarski, C.S.; Son Hing, L.S. Gender inequalities in the workplace: The effects of organizational structures, processes, practices, and decision makers’ sexism. Front. Psychol. 2015, 6, e1400. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; Salazar de Pablo, G.; Il Shin, J.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; et al. Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 2022, 27, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, F.; Fitterling, H.; Charney, D.; Southwick, S. Social support and resilience to stress across the life span: A neurobiologic framework. Curr. Psychiatry Rep. 2008, 10, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Løseth, G.E.; Eikemo, M.; Trøstheim, M.; Meier, I.M.; Bjørnstad, H.; Asratian, A.; Pazmandi, C.; Tangen, V.W.; Heilig, M.; Leknes, S. Stress recovery with social support: A dyadic stress and support task. Psychoneuroendocrinology 2022, 146, e105949. [Google Scholar] [CrossRef]
- Renton, M.; Guilherme, J. Effectiveness of community-based sports programs on mental health in Brazilian favelas. Rev. Int. Med. Cienc. Activ. Física Deporte 2024, 24, 235–250. [Google Scholar] [CrossRef]
- Mountjoy M, Junge A, Bindra A; et al. Surveillance of athlete mental health symptoms and disorders: A supplement to the International Olympic Committee’s consensus statement on injury and illness surveillance. Br. J. Sports Med. 2023, 57, 1351–1360. Available online: https://bjsm.bmj.com/content/bjsports/57/21/1351.full.pdf (accessed on 15 May 2024). [CrossRef]
- Graham, I.D.; Kothari, A.; McCutcheon, C. Moving knowledge into action for more effective practice, programmes and policy: Protocol for a research programme on integrated knowledge translation. Implement Sci. 2018, 13, e22. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.D.; Drust, B. A framework for effective knowledge translation and performance delivery of Sport Scientists in professional sport. Eur. J. Sport Sci. 2021, 21, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, C.; Schary, D.P.; Jacobsson, J.; Korhonen, L.; Timpka, T. Aligning categories of mental health conditions with intervention types in high-performance sports: A narrative cornerstone review and classification framework. J. Sci. Med. Sport 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Stevens, M.J.; Lane, A.M. Influence of response time frame on mood assessment. Anx. Stress Coping 2005, 18, 279–285. [Google Scholar] [CrossRef]
- Winkielman, P.; Knauper, B.; Schwarz, N. Looking back at anger: Reference periods change the interpretation of emotion frequency questions. J. Person. Soc. Psychol. 1998, 75, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, M.J.; Karageorghis, C.I. Psychological effects of rapid weight loss and attitudes towards eating among professional jockeys. J. Sports Sci. 2008, 26, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Galambos, S. Utility of mood profiles in identifying risk of eating disorders among adolescent rowers. In Proceedings of the 39th Australian Psychological Society Annual Conference, Sydney, NSW, Australia, 29 September–3 October 2004; pp. 269–273. Available online: https://www.academia.edu/12622733/Utility_of_Mood_Profiles_in_Identifying_Risk_of_Eating_Disorders_among_Adolescent_Rowers (accessed on 15 May 2024).
- Van Wijk, C.H.; Martin, J.H.; Hans-Arendse, C. Clinical utility of the Brunel Mood Scale in screening for post-traumatic stress risk in a military population. Mil. Med. 2013, 178, 372–376. [Google Scholar] [CrossRef]
- Gould, M.S.; Marrocco, F.A.; Kleinman, M.; Thomas, J.G.; Mostkoff, K.; Côté, J.; Davies, M. Evaluating iatrogenic risk of youth suicide screening programs: A randomized controlled trial. J. Am. Med. Assoc. 2005, 29, 1635–1643. [Google Scholar] [CrossRef]
Source | Group | Right Now | Past Week | ||
---|---|---|---|---|---|
n | % | n | % | ||
Sex | Male | 282 | 58.6 | 229 | 54.9 |
Female | 199 | 41.4 | 188 | 45.1 | |
Age Group | 12–17 years | 303 | 63.0 | 252 | 60.4 |
18+ years | 178 | 37.0 | 165 | 39.6 | |
Social Vulnerability | Vulnerable | 258 | 55.6 | 232 | 57.9 |
Not vulnerable | 206 | 44.4 | 169 | 42.1 | |
Sport | Artistic Swimming | 27 | 5.6 | 24 | 5.8 |
Basketball | 55 | 11.4 | 22 | 5.3 | |
Gymnastics | 10 | 2.1 | 10 | 2.4 | |
Judo | 40 | 8.3 | 35 | 8.4 | |
Rowing | 104 | 21.6 | 98 | 23.5 | |
Swimming | 75 | 15.6 | 70 | 16.8 | |
Volleyball | 93 | 19.3 | 83 | 19.9 | |
Water Polo | 77 | 16.0 | 75 | 18.0 | |
Total | All | 481 | 100.0 | 417 | 100.0 |
Right Now (n = 481) | Past Week (n = 417) | F | |||
---|---|---|---|---|---|
M | SD | M | SD | ||
Tension | 44.69 | 7.34 | 46.13 | 8.34 | 7.59 * |
Depression | 50.31 | 10.54 | 52.53 | 13.40 | 7.74 * |
Anger | 51.94 | 14.13 | 54.42 | 16.51 | 5.90 |
Vigor | 47.14 | 8.62 | 45.90 | 8.50 | 4.68 |
Fatigue | 50.55 | 10.43 | 57.34 | 12.76 | 76.97 † |
Confusion | 48.15 | 10.11 | 49.35 | 9.69 | 3.26 |
Source | Iceberg (n = 165; 34.3%) | Inverse Everest (n = 13; 2.7%) | Inverse Iceberg (n = 30; 6.2%) | ||||||
M | SD | 95% CI | M | SD | 95% CI | M | SD | 95% CI | |
Tension | 41.69 | 3.76 | (41.11, 42.27) | 61.69 | 7.60 | (57.10, 66.28) | 56.67 | 8.92 | (53.33, 60.00) |
Depression | 45.93 | 2.45 | (45.55, 46.30) | 89.38 | 18.89 | (77.97, 100.80) | 66.37 | 13.76 | (61.23, 71.50) |
Anger | 46.90 | 4.33 | (46.23, 47.56) | 103.08 | 23.70 | (88.76, 117.40) | 75.40 | 21.62 | (67.33, 83.47) |
Vigor | 54.93 | 5.35 | (54.10, 55.75) | 39.54 | 9.39 | (33.87, 45.21) | 45.00 | 6.20 | (42.69, 47.31) |
Fatigue | 44.61 | 4.57 | (43.90, 45.31) | 80.15 | 11.15 | (73.42, 86.89) | 59.43 | 8.52 | (56.25, 62.61) |
Confusion | 44.56 | 3.56 | (44.01, 45.10) | 77.00 | 27.16 | (60.59, 93.41) | 65.10 | 14.46 | (59.70, 70.50) |
Source | Shark Fin (n = 56; 11.6%) | Submerged (n = 147; 30.6%) | Surface (n = 70; 14.6%) | ||||||
M | SD | 95% CI | M | SD | 95% CI | M | SD | 95% CI | |
Tension | 43.38 | 4.96 | (42.05, 44.70) | 41.31 | 3.54 | (40.73, 41.88) | 51.60 | 6.25 | (50.11, 53.09) |
Depression | 52.04 | 8.27 | (49.82, 54.25) | 47.54 | 4.41 | (46.83, 48.26) | 50.93 | 7.57 | (49.12, 52.73) |
Anger | 51.96 | 9.15 | (49.51 54.42) | 47.27 | 5.52 | (46.37, 48.17) | 54.07 | 8.66 | (52.01, 56.14) |
Vigor | 37.84 | 5.44 | (36.38, 39.30) | 40.86 | 4.15 | (40.19, 41.54) | 51.76 | 4.82 | (50.61, 52.91) |
Fatigue | 63.41 | 9.53 | (60.86, 65.96) | 45.71 | 4.32 | (45.00, 46.41) | 55.14 | 7.34 | (53.39, 56.89) |
Confusion | 46.75 | 5.82 | (45.19, 48.31) | 44.78 | 3.53 | (44.20, 45.35) | 52.19 | 7.48 | (50.40, 53.97) |
Source | Iceberg (n = 85; 20.4%) | Inverse Everest (n = 20; 4.8%) | Inverse Iceberg (n = 41; 9.8%) | ||||||
M | SD | 95% CI | M | SD | 95% CI | M | SD | 95% CI | |
Tension | 42.21 | 4.31 | (41.28, 43.14) | 64.85 | 9.86 | (60.23, 69.47) | 52.76 | 5.24 | (51.10, 54.41) |
Depression | 45.78 | 2.64 | (45.21, 46.35) | 90.25 | 21.45 | (80.21, 100.29) | 68.46 | 13.95 | (64.06, 72.87) |
Anger | 47.68 | 7.26 | (46.12, 49.25) | 104.35 | 23.80 | (93.21, 115.49) | 72.02 | 15.34 | (67.18, 76.87) |
Vigor | 55.06 | 5.53 | (53.87, 56.25) | 44.90 | 7.48 | (41.40, 48.40) | 41.83 | 5.39 | (40.13, 43.53) |
Fatigue | 44.91 | 4.62 | (43.91, 45.90) | 78.15 | 9.29 | (73.80, 82.50) | 60.17 | 10.26 | (56.93, 63.41) |
Confusion | 44.88 | 4.25 | (43.97, 45.80) | 73.60 | 17.69 | (65.32, 81.88) | 58.63 | 7.61 | (56.23, 61.04) |
Source | Shark Fin (n = 78; 18.7%) | Submerged (n = 118; 28.3%) | Surface (n = 75; 18.0%) | ||||||
M | SD | 95% CI | M | SD | 95% CI | M | SD | 95% CI | |
Tension | 43.36 | 5.66 | (42.08, 44.64) | 41.39 | 3.57 | (40.74, 42.04) | 52.28 | 7.56 | (50.54, 54.02) |
Depression | 49.81 | 7.14 | (48.20, 51.42) | 48.54 | 6.34 | (47.39, 49.70) | 50.55 | 6.85 | (48.97, 52.12) |
Anger | 50.46 | 7.54 | (48.76, 52.16) | 47.87 | 5.77 | (46.82, 48.93) | 53.55 | 10.23 | (51.19, 55.90) |
Vigor | 39.63 | 5.55 | (38.38, 40.88) | 40.71 | 5.09 | (39.78, 41.64) | 52.72 | 5.59 | (51.43, 54.01) |
Fatigue | 71.64 | 7.77 | (69.89, 73.39) | 50.18 | 6.43 | (49.01, 51.35) | 60.75 | 8.69 | (58.75, 62.75) |
Confusion | 46.73 | 5.41 | (45.51, 47.95) | 44.81 | 4.13 | (44.05, 45.56) | 52.72 | 7.57 | (50.98, 54.46) |
Cluster | Predicted Group Membership | n | % | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
Right Now | ||||||||
1 | 158 | 0 | 0 | 0 | 1 | 6 | 165 | 95.8 |
2 | 0 | 13 | 0 | 0 | 0 | 0 | 13 | 100.0 |
3 | 0 | 0 | 28 | 1 | 0 | 1 | 30 | 93.3 |
4 | 0 | 0 | 2 | 47 | 5 | 2 | 56 | 83.9 |
5 | 8 | 0 | 1 | 1 | 134 | 3 | 147 | 91.2 |
6 | 2 | 0 | 1 | 0 | 0 | 67 | 70 | 95.7 |
Past Week | ||||||||
1 | 76 | 0 | 0 | 0 | 4 | 5 | 85 | 89.4 |
2 | 0 | 20 | 0 | 0 | 0 | 0 | 20 | 100.0 |
3 | 0 | 2 | 34 | 2 | 0 | 3 | 41 | 82.9 |
4 | 0 | 0 | 2 | 70 | 4 | 2 | 78 | 89.7 |
5 | 9 | 0 | 4 | 1 | 102 | 2 | 118 | 86.4 |
6 | 1 | 0 | 1 | 1 | 3 | 69 | 75 | 92.0 |
Source | Cluster | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | % | 2 | % | 3 | % | 4 | % | 5 | % | 6 | % | |
Right now (n = 481) | ||||||||||||
Sex χ2(5) = 45.74† | ||||||||||||
Male (n = 282) | 126 †+ | 44.7 | 4 *− | 1.4 | 15 | 5.3 | 24 *− | 8.5 | 66 †– | 23.4 | 47 | 16.7 |
Female (n = 199) | 39 †– | 19.6 | 9 *+ | 4.5 | 15 | 7.5 | 32 *+ | 16.1 | 81 †+ | 40.7 | 23 | 11.6 |
Age group χ2(5) = 8.33 | ||||||||||||
≤17 years (n = 303) | 114 *+ | 37.6 | 7 | 2.3 | 15 | 5.0 | 30 | 9.9 | 96 | 31.7 | 41 | 13.5 |
18+ years (n = 178) | 51 *− | 28.7 | 6 | 3.4 | 15 | 8.4 | 26 | 14.6 | 51 | 28.7 | 29 | 16.3 |
Vulnerability χ2(5) = 10.67 | ||||||||||||
No (n = 206) | 76 | 36.9 | 5 | 2.4 | 11 | 5.3 | 24 | 11.7 | 50 *− | 24.3 | 40 *+ | 19.4 |
Yes (n = 258) | 83 | 32.2 | 8 | 3.1 | 17 | 6.6 | 31 | 12.0 | 90 *+ | 34.9 | 29 *− | 11.2 |
Past week (n = 417) | ||||||||||||
Sex χ2(5) = 33.43† | ||||||||||||
Male (n = 229) | 66 †+ | 28.8 | 10 | 4.4 | 13 §– | 5.7 | 39 | 17.0 | 54 *− | 23.6 | 47 | 20.5 |
Female (n = 188) | 19 †– | 10.1 | 10 | 5.3 | 28 §+ | 14.9 | 39 | 20.7 | 64 *+ | 34.0 | 28 | 14.9 |
Age group χ2(5) = 8.65 | ||||||||||||
≤17 years (n = 252) | 61 *+ | 24.2 | 9 | 3.6 | 22 | 8.7 | 45 | 17.9 | 67 | 26.6 | 48 | 19.0 |
18+ years (n = 165) | 24 *− | 14.5 | 11 | 6.7 | 19 | 11.5 | 33 | 20.0 | 51 | 30.9 | 27 | 16.4 |
Vulnerability χ2(5) = 11.1 * | ||||||||||||
No (n = 169) | 36 | 21.3 | 10 | 5.9 | 15 | 8.9 | 35 | 20.7 | 35 §– | 20.7 | 38 | 22.5 |
Yes (n = 232) | 42 | 18.1 | 10 | 4.3 | 24 | 10.3 | 41 | 17.7 | 80 §+ | 34.5 | 35 | 15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Miranda Rohlfs, I.C.P.; Noce, F.; Wilke, C.; Terry, V.R.; Parsons-Smith, R.L.; Terry, P.C. Prevalence of Specific Mood Profile Clusters among Elite and Youth Athletes at a Brazilian Sports Club. Sports 2024, 12, 195. https://doi.org/10.3390/sports12070195
de Miranda Rohlfs ICP, Noce F, Wilke C, Terry VR, Parsons-Smith RL, Terry PC. Prevalence of Specific Mood Profile Clusters among Elite and Youth Athletes at a Brazilian Sports Club. Sports. 2024; 12(7):195. https://doi.org/10.3390/sports12070195
Chicago/Turabian Stylede Miranda Rohlfs, Izabel Cristina Provenza, Franco Noce, Carolina Wilke, Victoria R. Terry, Renée L. Parsons-Smith, and Peter C. Terry. 2024. "Prevalence of Specific Mood Profile Clusters among Elite and Youth Athletes at a Brazilian Sports Club" Sports 12, no. 7: 195. https://doi.org/10.3390/sports12070195
APA Stylede Miranda Rohlfs, I. C. P., Noce, F., Wilke, C., Terry, V. R., Parsons-Smith, R. L., & Terry, P. C. (2024). Prevalence of Specific Mood Profile Clusters among Elite and Youth Athletes at a Brazilian Sports Club. Sports, 12(7), 195. https://doi.org/10.3390/sports12070195