The Finishing Space Value for Shooting Decision-Making in High-Performance Football
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. Positional and Notational Data Source for Computing FSV Model Parameters
- (a)
- Assign a value to pitch locations. This value corresponds to the probability of scoring from a shot made from that location (defined by distance and angle to goal). A total of 5294 shots made with the players’ feet and from open-play situations were observed, from which 543 goals were scored.
- (b)
- Assign a value to the free space around each player. Computed as the relative value of this space compared to the average value for the same location obtained from a subset of 20 football matches of the database, randomly selected from the 2019–2020 season.
2.1.2. Affordances Assessment by Football Coaches
- (a)
- Please evaluate, on a scale from 1 to 10 (where 1 is “not at all likely” and 10 is “highly likely”), what you consider to be the probability to score a goal from that specific shot of player “A”.
- (b)
- Do you think that player A chose “the best option” in that situation, or would it be preferable to pass to one of his teammates (B, C or D)? If you consider that the play should not be finished immediately, as neither player A nor any of his colleagues (B, C or D) are in a good position to score immediately (i.e., by shooting or through a single-assistance pass), please choose option “E”.
2.2. Data Processing
- 1.
- The , which is computed as the probability of achieving a goal from a shot at a given position (see Figure A3 in Appendix A), considering two sub-components: (a) the distance and (b) the angle of each player in relation to the opponent’s goal (described in Section 2.2.1).
- 2.
- The , capturing the space around each player in a VD, corresponding to the respective cell area and considering its specific location in the effective playing space (EPS) (described in Section 2.2.2).
- 3.
- The , depending on the player’s distance to their nearest opponent towards the goal line (described in Section 2.2.3).
2.2.1. The Player Location ()
2.2.2. The Player Relative Voronoi Area ()
- (a)
- VC inside the EPS (INS), i.e., that does not make contact with any of the outer lines of the pitch or with the goalkeepers’ cells (e.g., the white shaded cell in Figure 3).
- (b)
- VC outside and in front of the EPS (OUT_F), which makes contact only with the opposing goal line or the opposing goalkeeper’s VC (e.g., the yellow shaded cell in Figure 3).
- (c)
- VC outside the EPS, which makes contact only with the pitch sideline(s) (OUT_S) (e.g., the red shaded cell in Figure 3).
- (d)
- VC outside the EPS that makes contact, simultaneously, with the opposing goal line or the cell of the opposing goalkeeper (front) and at least one of the pitch outside the lines (OUT_S_F) (e.g., the blue shaded cell in Figure 3).
2.2.3. The Player Relative Voronoi Position ()
2.3. Statistical Analysis Methods
- (a)
- A linear regression between the FSV and the scale used by the PE, on how probable a shot made from player A (i.e., the ball carrier) in each situation could result in a goal.
- (b)
- The Gwet statistic [47,48], to assess the inter-rater reliability coefficient, i.e., the degree of agreement among the coaches of the PE when they choose one option of for each of the 50 finishing situations of the questionnaire. The Gwet statistic is computed using
- (c)
- A multiclass Brier Score (BS) was used to measure the accuracy of the FSV model to predict the choices of the PE coaches. That is, the multiclass compares, for each finishing situation, i, the fraction, , of the PE that chose option j, with the probability, , assigned by an FSV-based model. Each situation, i, contributes to the overall with , given by
- (A)
- FSV, approach I, where the probability, , that option j is selected in situation i is given by
- (B)
- FSV, approach II, where “Option A” is considered differently from all other options, as it is considered that if the ball carrier (“Option A”) has a “minimum” FSV value, then he/she should shoot. The “minimum” FSV value is described by a normal distribution, , with fitted to the ball carrier (A) FSV values when option A is selected (see Figure A13 in Appendix A). Consequently, the probability for option A is given by
In order to assess the “quality” of the two FSV versions, they can be compared with a reference. We used as reference a model where for all situations, the probability that an expert selects option j is used, i.e., and consequently
3. Results
3.1. Comparative Analysis of the Ball Carrier’s Probability to Score
3.2. The Coaches’ Opinions
3.3. Comparative Analysis between the PE and the FSV Model
4. Discussion
5. Conclusions
- (a)
- (b)
- (c)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BS | Brier Score |
EPS | Effective Playing Space |
EPV | Expected Possession Value |
FSV | Finishing Space Value |
PE | Panel of Expert (coaches) |
PL | Player Location |
RVA | Relative Voronoi Area |
RVP | Relative Voronoi Position |
VA | Voronoi Area |
VAe | Expected Voronoi Area |
VC | Voronoi Cell |
VD | Voronoi Diagram |
xG | Expected Goal |
Appendix A. Additional Figures and Tables
Situation | PE Choices | FSV Values (A.U.) | BS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | Gwet | A | B | C | D | Model I | Model II | |
01 | 4 | 2 | 0 | 1 | 3 | 0.22 | 2.85 | 2.74 | 0.00 | 6.98 | 0.17 | 0.11 |
02 | 0 | 3 | 1 | 4 | 2 | 0.22 | 3.26 | 9.07 | 5.07 | 6.41 | 0.04 | 0.05 |
03 | 6 | 0 | 0 | 2 | 2 | 0.38 | 4.43 | 3.67 | 0.45 | 2.85 | 0.08 | 0.03 |
04 | 10 | 0 | 0 | 0 | 1.00 | 10.52 | 0,60 | 0.00 | 0.02 | 0.00 | ||
05 | 2 | 1 | 2 | 4 | 1 | 0.18 | 4.97 | 12.03 | 13.73 | 10.47 | 0.10 | 0.06 |
06 | 1 | 6 | 3 | 0 | 0 | 0.40 | 7.73 | 21.08 | 15.74 | 3.24 | 0.01 | 0.12 |
07 | 1 | 5 | 0 | 2 | 2 | 0.27 | 4.46 | 14.87 | 4.87 | 9.84 | 0.04 | 0.03 |
08 | 3 | 7 | 0 | 0 | 0.53 | 4.48 | 6.98 | 6.32 | 0.13 | 0.12 | ||
09 | 0 | 3 | 1 | 0 | 6 | 0.40 | 1.10 | 1.98 | 0.06 | 0.91 | 0.02 | 0.02 |
10 | 0 | 2 | 0 | 7 | 1 | 0.49 | 2.64 | 3.15 | 5.45 | 11.40 | 0.02 | 0.03 |
11 | 1 | 6 | 2 | 0 | 1 | 0.36 | 3.84 | 9.39 | 0.00 | 5.87 | 0.04 | 0.05 |
12 | 1 | 1 | 6 | 0 | 2 | 0.36 | 0.12 | 5.07 | 48.22 | 6.03 | 0.11 | 0.09 |
13 | 3 | 1 | 0 | 1 | 5 | 0.29 | 1.84 | 3.95 | 3.29 | 3.60 | 0.07 | 0.05 |
14 | 0 | 4 | 5 | 0 | 1 | 0.36 | 3.24 | 4.71 | 10.19 | 3.65 | 0.06 | 0.07 |
15 | 4 | 1 | 5 | 0 | 0.36 | 3.27 | 12.28 | 7.65 | 0.31 | 0.22 | ||
16 | 2 | 0 | 7 | 0 | 1 | 0.49 | 1.34 | 11.44 | 8.23 | 8.38 | 0.30 | 0.28 |
17 | 0 | 9 | 0 | 0 | 1 | 0.80 | 2.64 | 8.73 | 8.22 | 2.25 | 0.18 | 0.19 |
18 | 1 | 2 | 6 | 1 | 0 | 0.36 | 1.34 | 5.22 | 15.16 | 8.39 | 0.04 | 0.03 |
19 | 0 | 10 | 0 | 0 | 1.00 | 3.99 | 11.57 | 6.57 | 0.06 | 0.12 | ||
20 | 0 | 1 | 2 | 0 | 7 | 0.49 | 3.37 | 0.00 | 4.47 | 5.33 | 0.13 | 0.18 |
21 | 1 | 0 | 6 | 3 | 0 | 0.40 | 2.28 | 2.65 | 14.30 | 21.81 | 0.23 | 0.19 |
22 | 0 | 1 | 9 | 0 | 0 | 0.80 | 3.33 | 23.92 | 9.69 | 13.77 | 0.68 | 0.60 |
23 | 0 | 9 | 0 | 0 | 1 | 0.80 | 3.66 | 7.14 | 5.35 | 1.44 | 0.14 | 0.19 |
24 | 9 | 0 | 1 | 0 | 0 | 0.80 | 11.27 | 0.00 | 4.65 | 3.08 | 0.02 | 0.01 |
25 | 5 | 5 | 0 | 0 | 0 | 0.44 | 1.67 | 2.86 | 4.21 | 1.78 | 0.29 | 0.25 |
26 | 4 | 0 | 5 | 0 | 1 | 0.36 | 3.41 | 1.80 | 10.18 | 14.74 | 0.37 | 0.26 |
27 | 4 | 0 | 6 | 0 | 0.47 | 4.92 | 4.56 | 7.45 | 0.06 | 0.05 | ||
28 | 1 | 1 | 0 | 1 | 7 | 0.47 | 5.05 | 0.46 | 2.45 | 2.36 | 0.12 | 0.21 |
29 | 2 | 2 | 0 | 1 | 7 | 0.49 | 4.63 | 3.82 | 5.49 | 0.00 | 0.18 | 0.24 |
30 | 10 | 0 | 0 | 0 | 0 | 1.00 | 12.35 | 9.65 | 26.99 | 16.53 | 0.83 | 0.02 |
31 | 6 | 0 | 0 | 3 | 1 | 0.40 | 7.57 | 12.27 | 1.86 | 16.57 | 0.26 | 0.02 |
32 | 1 | 4 | 1 | 1 | 3 | 0.20 | 3.23 | 7.74 | 6.83 | 3.27 | 0.03 | 0.03 |
33 | 0 | 10 | 0 | 0 | 0 | 1.00 | 1.36 | 69.82 | 22.81 | 7.19 | 0.00 | 0.00 |
34 | 0 | 0 | 4 | 3 | 3 | 0.27 | 1.71 | 3.37 | 6.36 | 5.03 | 0.01 | 0.02 |
35 | 0 | 1 | 5 | 0 | 4 | 0.36 | 1.36 | 3.23 | 10.01 | 3.81 | 0.06 | 0.06 |
36 | 1 | 0 | 1 | 6 | 2 | 0.36 | 0.57 | 4.23 | 0.45 | 4.45 | 0.10 | 0.10 |
37 | 8 | 0 | 1 | 1 | 0 | 0.62 | 9.24 | 8.46 | 5.72 | 14.77 | 0.38 | 0.02 |
38 | 10 | 0 | 0 | 0 | 0 | 1.00 | 9.10 | 0.00 | 11.37 | 8.80 | 0.42 | 0.07 |
39 | 2 | 2 | 0 | 4 | 2 | 0.20 | 4.60 | 6.34 | 5.82 | 0.02 | 0.13 | 0.12 |
40 | 1 | 4 | 5 | 0 | 0 | 0.36 | 7.10 | 15.72 | 8.50 | 2.54 | 0.15 | 0.16 |
41 | 0 | 1 | 6 | 0 | 3 | 0.40 | 0.60 | 0.00 | 6.42 | 0.64 | 0.01 | 0.01 |
42 | 4 | 3 | 1 | 1 | 1 | 0.20 | 8.82 | 8.96 | 2.00 | 7.72 | 0.02 | 0.07 |
43 | 1 | 4 | 2 | 0 | 3 | 0.22 | 1.41 | 2.00 | 5.61 | 3.97 | 0.11 | 0.10 |
44 | 2 | 8 | 0 | 0 | 0 | 0.64 | 4.46 | 31.12 | 9.02 | 1.81 | 0.04 | 0.00 |
45 | 10 | 0 | 0 | 0 | 0 | 1.00 | 15.07 | 8.59 | 21.95 | 1.03 | 0.62 | 0.00 |
46 | 1 | 5 | 4 | 0 | 0 | 0.36 | 1.93 | 8.84 | 0.00 | 20.52 | 0.62 | 0.55 |
47 | 10 | 0 | 0 | 0 | 0 | 1.00 | 12.99 | 3.23 | 10.11 | 10.13 | 0.18 | 0.00 |
48 | 0 | 8 | 1 | 1 | 0.62 | 4.15 | 5.35 | 2.92 | 0.14 | 0.20 | ||
49 | 1 | 9 | 0 | 0 | 0 | 0.80 | 1.92 | 16.33 | 5.29 | 5.22 | 0.01 | 0.00 |
50 | 0 | 0 | 6 | 0 | 0 | 0.47 | 3.68 | 2.11 | 3.53 | 2.51 | 0.11 | 0.16 |
Gwet AC1 | 0.39 | BS | 0.16 | 0.11 |
Situation | Probabilities of FSV Model (I) | Probabilities of FSV Model (II) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | BS(I) | A | B | C | D | E | BS(II) | |
01 | 0.09 | 0.08 | 0.00 | 0.57 | 0.27 | 0.17 | 0.19 | 0.07 | 0.00 | 0.50 | 0.24 | 0.11 |
02 | 0.04 | 0.51 | 0.11 | 0.21 | 0.13 | 0.04 | 0.17 | 0.44 | 0.10 | 0.18 | 0.11 | 0.05 |
03 | 0.30 | 0.21 | 0.01 | 0.13 | 0.35 | 0.08 | 0.45 | 0.17 | 0.01 | 0.10 | 0.28 | 0.03 |
04 | 0.84 | 0.00 | 0.00 | 0.00 | 0.16 | 0.02 | 0.96 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 |
05 | 0.02 | 0.30 | 0.46 | 0.19 | 0.03 | 0.10 | 0.26 | 0.23 | 0.35 | 0.15 | 0.02 | 0.06 |
06 | 0.02 | 0.72 | 0.25 | 0.00 | 0.01 | 0.01 | 0.49 | 0.38 | 0.13 | 0.00 | 0.00 | 0.12 |
07 | 0.02 | 0.72 | 0.02 | 0.21 | 0.04 | 0.04 | 0.22 | 0.57 | 0.02 | 0.16 | 0.03 | 0.03 |
08 | 0.13 | 0.38 | 0.30 | 0.00 | 0.19 | 0.13 | 0.31 | 0.30 | 0.24 | 0.00 | 0.15 | 0.12 |
09 | 0.09 | 0.21 | 0.00 | 0.07 | 0.63 | 0.02 | 0.14 | 0.20 | 0.00 | 0.07 | 0.59 | 0.02 |
10 | 0.02 | 0.03 | 0.11 | 0.74 | 0.11 | 0.02 | 0.12 | 0.02 | 0.10 | 0.66 | 0.09 | 0.03 |
11 | 0.07 | 0.60 | 0.00 | 0.19 | 0.15 | 0.04 | 0.22 | 0.50 | 0.00 | 0.15 | 0.12 | 0.05 |
12 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.11 | 0.03 | 0.00 | 0.97 | 0.00 | 0.00 | 0.09 |
13 | 0.06 | 0.23 | 0.16 | 0.20 | 0.35 | 0.07 | 0.13 | 0.22 | 0.15 | 0.18 | 0.32 | 0.05 |
14 | 0.04 | 0.10 | 0.68 | 0.05 | 0.13 | 0.06 | 0.17 | 0.08 | 0.59 | 0.05 | 0.12 | 0.07 |
15 | 0.02 | 0.71 | 0.19 | 0.00 | 0.08 | 0.31 | 0.16 | 0.61 | 0.17 | 0.00 | 0.07 | 0.22 |
16 | 0.00 | 0.52 | 0.20 | 0.21 | 0.07 | 0.30 | 0.06 | 0.49 | 0.19 | 0.20 | 0.06 | 0.28 |
17 | 0.02 | 0.45 | 0.38 | 0.02 | 0.13 | 0.18 | 0.13 | 0.40 | 0.34 | 0.01 | 0.12 | 0.19 |
18 | 0.00 | 0.03 | 0.79 | 0.13 | 0.04 | 0.04 | 0.06 | 0.03 | 0.74 | 0.13 | 0.04 | 0.03 |
19 | 0.04 | 0.71 | 0.16 | 0.00 | 0.10 | 0.06 | 0.21 | 0.58 | 0.13 | 0.00 | 0.08 | 0.12 |
20 | 0.13 | 0.00 | 0.24 | 0.34 | 0.29 | 0.16 | 0.25 | 0.00 | 0.20 | 0.29 | 0.25 | 0.18 |
21 | 0.00 | 0.00 | 0.18 | 0.81 | 0.01 | 0.23 | 0.09 | 0.00 | 0.16 | 0.74 | 0.01 | 0.19 |
22 | 0.00 | 0.86 | 0.03 | 0.11 | 0.00 | 0.68 | 0.14 | 0.74 | 0.02 | 0.09 | 0.00 | 0.60 |
23 | 0.10 | 0.45 | 0.23 | 0.01 | 0.21 | 0.14 | 0.24 | 0.38 | 0.19 | 0.01 | 0.18 | 0.19 |
24 | 0.77 | 0.00 | 0.08 | 0.03 | 0.12 | 0.02 | 0.95 | 0.00 | 0.02 | 0.01 | 0.03 | 0.01 |
25 | 0.06 | 0.15 | 0.32 | 0.07 | 0.40 | 0.29 | 0.13 | 0.14 | 0.30 | 0.06 | 0.37 | 0.25 |
26 | 0.01 | 0.00 | 0.24 | 0.71 | 0.04 | 0.37 | 0.15 | 0.00 | 0.20 | 0.61 | 0.03 | 0.26 |
27 | 0.18 | 0.15 | 0.47 | 0.00 | 0.20 | 0.06 | 0.38 | 0.11 | 0.36 | 0.00 | 0.15 | 0.05 |
28 | 0.42 | 0.01 | 0.10 | 0.10 | 0.37 | 0.12 | 0.57 | 0.01 | 0.08 | 0.07 | 0.28 | 0.21 |
29 | 0.23 | 0.15 | 0.34 | 0.00 | 0.27 | 0.18 | 0.40 | 0.12 | 0.26 | 0.00 | 0.21 | 0.24 |
30 | 0.03 | 0.01 | 0.84 | 0.12 | 0.00 | 0.83 | 0.85 | 0.00 | 0.13 | 0.02 | 0.00 | 0.02 |
31 | 0.05 | 0.26 | 0.00 | 0.67 | 0.02 | 0.26 | 0.49 | 0.14 | 0.00 | 0.36 | 0.01 | 0.02 |
32 | 0.05 | 0.42 | 0.31 | 0.05 | 0.17 | 0.03 | 0.18 | 0.36 | 0.27 | 0.05 | 0.14 | 0.03 |
33 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.94 | 0.00 | 0.00 | 0.00 | 0.00 |
34 | 0.03 | 0.10 | 0.40 | 0.24 | 0.24 | 0.01 | 0.10 | 0.09 | 0.37 | 0.22 | 0.22 | 0.02 |
35 | 0.01 | 0.05 | 0.72 | 0.07 | 0.15 | 0.06 | 0.07 | 0.04 | 0.68 | 0.07 | 0.14 | 0.06 |
36 | 0.01 | 0.29 | 0.01 | 0.32 | 0.37 | 0.10 | 0.05 | 0.28 | 0.01 | 0.31 | 0.35 | 0.10 |
37 | 0.15 | 0.12 | 0.03 | 0.66 | 0.03 | 0.38 | 0.68 | 0.04 | 0.01 | 0.25 | 0.01 | 0.02 |
38 | 0.25 | 0.00 | 0.47 | 0.22 | 0.06 | 0.42 | 0.70 | 0.00 | 0.18 | 0.09 | 0.02 | 0.07 |
39 | 0.16 | 0.34 | 0.28 | 0.00 | 0.21 | 0.13 | 0.35 | 0.27 | 0.22 | 0.00 | 0.17 | 0.12 |
40 | 0.07 | 0.78 | 0.12 | 0.00 | 0.03 | 0.15 | 0.46 | 0.45 | 0.07 | 0.00 | 0.02 | 0.16 |
41 | 0.01 | 0.00 | 0.64 | 0.01 | 0.34 | 0.01 | 0.05 | 0.00 | 0.61 | 0.01 | 0.33 | 0.01 |
42 | 0.33 | 0.34 | 0.01 | 0.23 | 0.09 | 0.02 | 0.72 | 0.14 | 0.00 | 0.10 | 0.04 | 0.07 |
43 | 0.03 | 0.05 | 0.41 | 0.20 | 0.31 | 0.11 | 0.09 | 0.05 | 0.39 | 0.19 | 0.29 | 0.10 |
44 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.04 | 0.21 | 0.79 | 0.00 | 0.00 | 0.00 | 0.00 |
45 | 0.20 | 0.02 | 0.78 | 0.00 | 0.00 | 0.62 | 0.96 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 |
46 | 0.00 | 0.05 | 0.00 | 0.93 | 0.01 | 0.62 | 0.08 | 0.05 | 0.00 | 0.86 | 0.01 | 0.55 |
47 | 0.50 | 0.01 | 0.23 | 0.23 | 0.04 | 0.18 | 0.94 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 |
48 | 0.22 | 0.37 | 0.11 | 0.00 | 0.31 | 0.14 | 0.36 | 0.30 | 0.09 | 0.00 | 0.25 | 0.20 |
49 | 0.00 | 0.90 | 0.03 | 0.03 | 0.04 | 0.01 | 0.08 | 0.83 | 0.03 | 0.03 | 0.03 | 0.00 |
50 | 0.23 | 0.08 | 0.21 | 0.11 | 0.37 | 0.11 | 0.35 | 0.07 | 0.18 | 0.09 | 0.31 | 0.16 |
Mean | 0.16 | Mean | 0.11 |
Situation | Probabilities of PL Model | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | BS(PL) | |
01 | 0.10 | 0.11 | 0.14 | 0.05 | 0.59 | 0.10 |
02 | 0.07 | 0.05 | 0.19 | 0.07 | 0.62 | 0.18 |
03 | 0.15 | 0.04 | 0.05 | 0.03 | 0.72 | 0.25 |
04 | 0.89 | 0.01 | 0.00 | 0.00 | 0.10 | 0.01 |
05 | 0.17 | 0.09 | 0.13 | 0.05 | 0.56 | 0.17 |
06 | 0.27 | 0.11 | 0.08 | 0.03 | 0.51 | 0.29 |
07 | 0.29 | 0.09 | 0.03 | 0.07 | 0.52 | 0.16 |
08 | 0.47 | 0.04 | 0.04 | 0.00 | 0.45 | 0.33 |
09 | 0.05 | 0.02 | 0.08 | 0.07 | 0.77 | 0.06 |
10 | 0.14 | 0.02 | 0.07 | 0.07 | 0.70 | 0.41 |
11 | 0.37 | 0.05 | 0.15 | 0.04 | 0.38 | 0.23 |
12 | 0.03 | 0.26 | 0.24 | 0.04 | 0.44 | 0.11 |
13 | 0.17 | 0.02 | 0.03 | 0.03 | 0.75 | 0.05 |
14 | 0.32 | 0.07 | 0.05 | 0.04 | 0.52 | 0.30 |
15 | 0.21 | 0.12 | 0.09 | 0.00 | 0.58 | 0.27 |
16 | 0.30 | 0.09 | 0.07 | 0.04 | 0.50 | 0.28 |
17 | 0.35 | 0.05 | 0.04 | 0.01 | 0.54 | 0.52 |
18 | 0.28 | 0.14 | 0.09 | 0.09 | 0.41 | 0.24 |
19 | 0.23 | 0.06 | 0.04 | 0.00 | 0.67 | 0.69 |
20 | 0.16 | 0.02 | 0.04 | 0.04 | 0.74 | 0.03 |
21 | 0.17 | 0.02 | 0.07 | 0.27 | 0.46 | 0.25 |
22 | 0.30 | 0.14 | 0.18 | 0.07 | 0.30 | 0.35 |
23 | 0.29 | 0.03 | 0.06 | 0.01 | 0.62 | 0.56 |
24 | 0.81 | 0.04 | 0.02 | 0.01 | 0.12 | 0.02 |
25 | 0.28 | 0.06 | 0.05 | 0.01 | 0.60 | 0.30 |
26 | 0.19 | 0.01 | 0.06 | 0.11 | 0.62 | 0.26 |
27 | 0.19 | 0.07 | 0.05 | 0.00 | 0.68 | 0.41 |
28 | 0.18 | 0.07 | 0.11 | 0.06 | 0.58 | 0.02 |
29 | 0.10 | 0.02 | 0.09 | 0.12 | 0.66 | 0.03 |
30 | 0.70 | 0.03 | 0.12 | 0.02 | 0.13 | 0.06 |
31 | 0.27 | 0.05 | 0.17 | 0.09 | 0.41 | 0.14 |
32 | 0.30 | 0.04 | 0.06 | 0.05 | 0.55 | 0.12 |
33 | 0.04 | 0.39 | 0.10 | 0.20 | 0.28 | 0.25 |
34 | 0.23 | 0.01 | 0.04 | 0.06 | 0.66 | 0.19 |
35 | 0.08 | 0.06 | 0.09 | 0.03 | 0.74 | 0.15 |
36 | 0.17 | 0.03 | 0.07 | 0.03 | 0.71 | 0.29 |
37 | 0.54 | 0.06 | 0.03 | 0.05 | 0.32 | 0.09 |
38 | 0.90 | 0.03 | 0.01 | 0.00 | 0.05 | 0.01 |
39 | 0.17 | 0.05 | 0.08 | 0.16 | 0.55 | 0.10 |
40 | 0.72 | 0.03 | 0.02 | 0.01 | 0.21 | 0.40 |
41 | 0.08 | 0.05 | 0.07 | 0.08 | 0.71 | 0.23 |
42 | 0.41 | 0.03 | 0.07 | 0.05 | 0.43 | 0.09 |
43 | 0.08 | 0.05 | 0.05 | 0.03 | 0.79 | 0.20 |
44 | 0.22 | 0.14 | 0.07 | 0.03 | 0.54 | 0.36 |
45 | 0.96 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00 |
46 | 0.10 | 0.06 | 0.00 | 0.18 | 0.65 | 0.41 |
47 | 0.73 | 0.01 | 0.10 | 0.03 | 0.13 | 0.05 |
48 | 0.19 | 0.02 | 0.06 | 0.00 | 0.72 | 0.51 |
49 | 0.14 | 0.13 | 0.05 | 0.07 | 0.61 | 0.49 |
50 | 0.21 | 0.02 | 0.07 | 0.01 | 0.69 | 0.20 |
Mean | 0.22 |
Situation | Probabilities of the Model: Pollard et al. [28] | Probabilities of the Model: Link et al. [29] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | BS | A | B | C | D | E | BS | |
01 | 0.11 | 0.15 | 0.19 | 0.04 | 0.51 | 0.09 | 0.08 | 0.29 | 0.31 | 0.11 | 0.20 | 0.11 |
02 | 0.07 | 0.04 | 0.23 | 0.07 | 0.58 | 0.17 | 0.08 | 0.14 | 0.30 | 0.28 | 0.19 | 0.04 |
03 | 0.15 | 0.03 | 0.05 | 0.02 | 0.75 | 0.27 | 0.25 | 0.13 | 0.17 | 0.13 | 0.31 | 0.09 |
04 | 0.85 | 0.02 | 0.00 | 0.00 | 0.13 | 0.02 | 0.85 | 0.06 | 0.00 | 0.00 | 0.08 | 0.02 |
05 | 0.16 | 0.11 | 0.18 | 0.05 | 0.50 | 0.14 | 0.20 | 0.22 | 0.24 | 0.21 | 0.12 | 0.03 |
06 | 0.52 | 0.09 | 0.07 | 0.01 | 0.31 | 0.29 | 0.77 | 0.08 | 0.08 | 0.03 | 0.04 | 0.39 |
07 | 0.27 | 0.12 | 0.03 | 0.09 | 0.49 | 0.14 | 0.77 | 0.08 | 0.03 | 0.08 | 0.04 | 0.34 |
08 | 0.41 | 0.05 | 0.04 | 0.00 | 0.49 | 0.34 | 0.41 | 0.24 | 0.14 | 0.00 | 0.21 | 0.15 |
09 | 0.06 | 0.01 | 0.09 | 0.08 | 0.76 | 0.06 | 0.03 | 0.13 | 0.26 | 0.26 | 0.33 | 0.10 |
10 | 0.08 | 0.01 | 0.08 | 0.07 | 0.75 | 0.43 | 0.05 | 0.15 | 0.22 | 0.22 | 0.36 | 0.17 |
11 | 0.42 | 0.05 | 0.16 | 0.04 | 0.32 | 0.23 | 0.81 | 0.05 | 0.06 | 0.05 | 0.02 | 0.42 |
12 | 0.10 | 0.29 | 0.27 | 0.03 | 0.32 | 0.08 | 0.20 | 0.25 | 0.25 | 0.19 | 0.12 | 0.10 |
13 | 0.16 | 0.01 | 0.02 | 0.01 | 0.79 | 0.06 | 0.15 | 0.16 | 0.07 | 0.09 | 0.53 | 0.02 |
14 | 0.30 | 0.09 | 0.05 | 0.03 | 0.53 | 0.29 | 0.78 | 0.08 | 0.05 | 0.05 | 0.05 | 0.46 |
15 | 0.30 | 0.14 | 0.10 | 0.00 | 0.46 | 0.19 | 0.78 | 0.09 | 0.08 | 0.00 | 0.05 | 0.16 |
16 | 0.25 | 0.13 | 0.10 | 0.03 | 0.48 | 0.26 | 0.38 | 0.19 | 0.19 | 0.12 | 0.11 | 0.17 |
17 | 0.32 | 0.05 | 0.04 | 0.00 | 0.58 | 0.53 | 0.49 | 0.14 | 0.15 | 0.01 | 0.21 | 0.43 |
18 | 0.39 | 0.15 | 0.09 | 0.09 | 0.28 | 0.22 | 0.76 | 0.08 | 0.07 | 0.07 | 0.03 | 0.37 |
19 | 0.23 | 0.06 | 0.03 | 0.00 | 0.67 | 0.69 | 0.80 | 0.06 | 0.05 | 0.00 | 0.09 | 0.77 |
20 | 0.08 | 0.01 | 0.04 | 0.03 | 0.84 | 0.03 | 0.05 | 0.14 | 0.17 | 0.24 | 0.41 | 0.07 |
21 | 0.24 | 0.01 | 0.08 | 0.27 | 0.39 | 0.22 | 0.77 | 0.03 | 0.07 | 0.09 | 0.04 | 0.39 |
22 | 0.53 | 0.12 | 0.13 | 0.06 | 0.16 | 0.45 | 0.76 | 0.07 | 0.07 | 0.06 | 0.03 | 0.63 |
23 | 0.25 | 0.02 | 0.07 | 0.00 | 0.66 | 0.57 | 0.37 | 0.17 | 0.17 | 0.01 | 0.28 | 0.36 |
24 | 0.77 | 0.07 | 0.03 | 0.00 | 0.13 | 0.02 | 0.82 | 0.07 | 0.06 | 0.01 | 0.04 | 0.01 |
25 | 0.23 | 0.07 | 0.04 | 0.00 | 0.65 | 0.34 | 0.35 | 0.19 | 0.18 | 0.04 | 0.24 | 0.10 |
26 | 0.04 | 0.00 | 0.00 | 0.00 | 0.96 | 0.56 | 0.01 | 0.01 | 0.01 | 0.01 | 0.98 | 0.58 |
27 | 0.17 | 0.08 | 0.05 | 0.00 | 0.69 | 0.42 | 0.25 | 0.23 | 0.21 | 0.00 | 0.31 | 0.16 |
28 | 0.17 | 0.09 | 0.15 | 0.05 | 0.54 | 0.03 | 0.22 | 0.25 | 0.25 | 0.13 | 0.16 | 0.19 |
29 | 0.09 | 0.01 | 0.11 | 0.16 | 0.63 | 0.03 | 0.04 | 0.12 | 0.23 | 0.34 | 0.27 | 0.15 |
30 | 0.74 | 0.04 | 0.11 | 0.02 | 0.09 | 0.05 | 0.86 | 0.05 | 0.05 | 0.03 | 0.02 | 0.01 |
31 | 0.28 | 0.05 | 0.20 | 0.12 | 0.35 | 0.12 | 0.77 | 0.05 | 0.08 | 0.07 | 0.04 | 0.05 |
32 | 0.29 | 0.03 | 0.06 | 0.06 | 0.56 | 0.12 | 0.78 | 0.03 | 0.05 | 0.09 | 0.05 | 0.33 |
33 | 0.17 | 0.32 | 0.11 | 0.22 | 0.19 | 0.30 | 0.63 | 0.11 | 0.10 | 0.11 | 0.04 | 0.61 |
34 | 0.20 | 0.00 | 0.03 | 0.06 | 0.71 | 0.20 | 0.27 | 0.03 | 0.15 | 0.19 | 0.37 | 0.08 |
35 | 0.09 | 0.05 | 0.11 | 0.02 | 0.73 | 0.13 | 0.09 | 0.17 | 0.34 | 0.12 | 0.28 | 0.03 |
36 | 0.16 | 0.01 | 0.08 | 0.02 | 0.74 | 0.31 | 0.26 | 0.07 | 0.24 | 0.12 | 0.32 | 0.15 |
37 | 0.46 | 0.09 | 0.03 | 0.08 | 0.34 | 0.12 | 0.37 | 0.20 | 0.13 | 0.19 | 0.11 | 0.12 |
38 | 0.92 | 0.03 | 0.01 | 0.01 | 0.04 | 0.00 | 0.81 | 0.06 | 0.05 | 0.05 | 0.02 | 0.02 |
39 | 0.19 | 0.04 | 0.08 | 0.22 | 0.47 | 0.07 | 0.71 | 0.06 | 0.07 | 0.10 | 0.06 | 0.20 |
40 | 0.73 | 0.04 | 0.02 | 0.00 | 0.20 | 0.39 | 0.83 | 0.06 | 0.06 | 0.01 | 0.04 | 0.42 |
41 | 0.09 | 0.05 | 0.07 | 0.10 | 0.70 | 0.23 | 0.07 | 0.16 | 0.21 | 0.25 | 0.32 | 0.11 |
42 | 0.36 | 0.03 | 0.11 | 0.05 | 0.44 | 0.09 | 0.37 | 0.16 | 0.18 | 0.18 | 0.10 | 0.02 |
43 | 0.09 | 0.04 | 0.04 | 0.01 | 0.82 | 0.22 | 0.11 | 0.17 | 0.22 | 0.06 | 0.44 | 0.04 |
44 | 0.48 | 0.14 | 0.05 | 0.01 | 0.32 | 0.31 | 0.83 | 0.07 | 0.04 | 0.02 | 0.04 | 0.47 |
45 | 0.97 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.87 | 0.04 | 0.05 | 0.02 | 0.02 | 0.01 |
46 | 0.27 | 0.07 | 0.00 | 0.19 | 0.47 | 0.31 | 0.78 | 0.09 | 0.00 | 0.09 | 0.05 | 0.40 |
47 | 0.74 | 0.01 | 0.10 | 0.05 | 0.11 | 0.05 | 0.81 | 0.04 | 0.06 | 0.06 | 0.02 | 0.02 |
48 | 0.17 | 0.01 | 0.06 | 0.00 | 0.75 | 0.54 | 0.28 | 0.08 | 0.21 | 0.00 | 0.43 | 0.36 |
49 | 0.18 | 0.16 | 0.04 | 0.07 | 0.55 | 0.43 | 0.72 | 0.10 | 0.05 | 0.07 | 0.06 | 0.52 |
50 | 0.19 | 0.01 | 0.08 | 0.00 | 0.72 | 0.21 | 0.26 | 0.07 | 0.25 | 0.05 | 0.36 | 0.10 |
Mean (Pollard et al. [28]) | 0.23 | Mean (Link et al. [29]) | 0.22 |
References
- Ferreira, A. From game momentum to criticality of game situations. In Routledge Handbook of Sports Performance Analysis; Routledge: Oxford, UK, 2013; pp. 270–282. [Google Scholar]
- Nevo, D.; Ritov, Y. Around the goal: Examining the effect of the first goal on the second goal in soccer using survival analysis methods. J. Quant. Anal. Sport. 2013, 9, 165–177. [Google Scholar] [CrossRef]
- Pratas, J.M.; Volossovitch, A.; Carita, A.I. Goal scoring in elite male football: A systematic review. J. Hum. Sport Exerc. 2018, 218, 218–230. [Google Scholar] [CrossRef]
- Thorpe, R.; Bunker, D.; Almond, L. Rethinking Games Teaching; Department of Physical Education and Sport Science, University of Technology: Loughborough, UK, 1986. [Google Scholar]
- Seabra, F.; Dantas, E. Space definition for match analysis in soccer. Education 2006, 6, 97–113. [Google Scholar] [CrossRef]
- Gréhaigne, J.; Mahut, B.; Fernandez, A. Qualitative observation tools to analyse soccer. Int. J. Perform. Anal. Sport 2001, 1, 52–61. [Google Scholar] [CrossRef]
- Teodorescu, L. Problemas de Teoria e Metodologia Nos Jogos Desportivos; Horizonte: Lisboa, Portugal, 1984. [Google Scholar]
- Travassos, B.; Araujo, D.; Correia, V.; Esteves, P. Eco-Dynamics Approach to the study of Team Sports Performance. Open Sport. Sci. J. 2014, 3, 56–57. [Google Scholar] [CrossRef]
- Garganta, J. Trends of tactical performance analysis in team sports: Bridging the gap between research, training and competition. Rev. Port. CiÊNcias Desporto 2009, 9, 81–89. [Google Scholar] [CrossRef]
- Araújo, D.; Davids, K.; Hristovski, R. The ecological dynamics of decision making in sport. Psychol. Sport Exerc. 2006, 7, 653–676. [Google Scholar] [CrossRef]
- Gibson, J. The Ecological Approach to Visual Perception; Mifflin and Company: Boston, MA, USA, 1979. [Google Scholar]
- Gómez-Jordana, L.; Milho, J.; Ric, Á.; Silva, R.; Passos, P. Landscapes of passing opportunities in Football—Where they are and for how long are available? In Barça Sports Analytics Summit, 2nd ed.; Barça Innovation Hub: Barcelona, Spain, 2019; pp. 1–14. [Google Scholar]
- Fajen, B.R.; Riley, M.A.; Turvey, M.T. Information, affordances, and the control of action in sport. Int. J. Sport Psychol. 2009, 40, 79–107. [Google Scholar]
- Araújo, D.; Ramos, J.; Lopes, R. Shared affordances guide interpersonal synergies in sport teams. In Interpersonal Coordination and Performance in Social Systems; Routledge: Oxford, UK, 2016; pp. 183–196. [Google Scholar]
- Araújo, D.; Davids, K. What exactly is acquired during skill acquisition? J. Conscious. Stud. 2011, 18, 7–23. [Google Scholar]
- Araujo, J.; Hristovski, R.; Seifert, L.; Carvalho, J.; Davids, K. Ecological cognition: Expert decision-making behaviour in sport. Int. Rev. Sport Exerc. Psychol. 2019, 12, 1–25. [Google Scholar] [CrossRef]
- Silva, P.; Garganta, J.; Araújo, D.; Davids, K.; Aguiar, P. Shared knowledge or shared affordances? Insights from an ecological dynamics approach to team coordination in sports. Sport. Med. 2013, 43, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Silva, P.; Ramos, J. Affordance-based decisions guide team synergies during match performance. Res. Phys. Educ. Sport Health 2014, 3, 19–26. [Google Scholar]
- Araújo, D.; Davids, K. Team synergies in sport: Theory and measures. Front. Psychol. 2016, 7, 1449. [Google Scholar] [CrossRef] [PubMed]
- Carrilho, D.; Couceiro, M.S.; Brito, J.; Figueiredo, P.; Lopes, R.J.; Araújo, D. Using optical tracking system data to measure team synergic behavior: Synchronization of player-ball-goal angles in a football match. Sensors 2020, 20, 4990. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Brito, H.; Carrilho, D. Team decision-making behavior: An ecological dynamics approach. Asian J. Sport Exerc. Psychol. 2022, 3, 24–29. [Google Scholar] [CrossRef]
- Turvey, M.T. Action and perception at the level of synergies. Hum. Mov. Sci. 2007, 26, 657–697. [Google Scholar] [CrossRef] [PubMed]
- Araujo, D.; Dicks, M.; Davids, K. Selecting among Affordances: A Basis for Channeling Expertise in Sport. In Handbook of Embodied Cognition and Sport Psychology; MIT Press: Cambridge, MA, USA, 2019; pp. 557–580. [Google Scholar]
- Pol, R.; Balagué, N.; Ric, A.; Torrents, C.; Kiely, J.; Hristovski, R. Training or Synergizing? Complex Systems Principles Change the Understanding of Sport Processes. Sport. Med. Open 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, M.; Heras-escribano, M. Quantifying affordances through information theory. In Artificial Life Conference Proceedings; MIT Press: Cambridge, MA, USA, 2019; pp. 32–39. [Google Scholar]
- Franchak, J.; Adolph, K. Affordances as Probabilistic Functions: Implications for Development, Perception, and Decisions for Action. Ecol. Psychol. 2014, 26, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Passos, P.; Araújo, D.; Davids, K. Competitiveness and the process of co-adaptation in team sport performance. Front. Psychol. 2016, 7, 1562. [Google Scholar] [CrossRef]
- Pollard, R.; Ensum, J.; Taylor, S. Estimating the probability of a shot resulting in a goal: The effects of distance, angle and space. Int. J. Soccer Sci. 2004, 2, 50–55. [Google Scholar]
- Link, D.; Lang, S.; Seidenschwarz, P. Real time quantification of dangerousity in football using spatiotemporal tracking data. PLoS ONE 2016, 11, e0168768. [Google Scholar] [CrossRef] [PubMed]
- Eggels, H. Expected Goals in Soccer: Explaining Match Results using Predictive Analytics. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2016. [Google Scholar]
- Rathke, A. An examination of expected goals and shot efficiency in soccer. J. Hum. Sport Exerc. 2017, 12, 514–529. [Google Scholar] [CrossRef]
- Spearman, W. Beyond Expected Goals. In Proceedings of the MIT Sloan Sports Analytics Conference, Boston, MA, USA, 23–24 February 2018; pp. 1–17. [Google Scholar]
- Pardo, P. Creating a Model for Expected Goals in Football using Qualitative Player Information. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2020. [Google Scholar]
- Rowlinson, A. Football Shot Quality: Visualizing the Quality of Soccer/Football Shots. Master’s Thesis, Aalto University School of Business, Espoo, Finland, 2020. [Google Scholar]
- Anzer, G.; Bauer, P. A Goal Scoring Probability Model for Shots Based on Synchronized Positional and Event Data in Football (Soccer). Front. Sport. Act. Living 2021, 3, 624475. [Google Scholar] [CrossRef]
- Cavus, M.; Biecek, P. Explainable expected goal models for performance. arXiv 2022, arXiv:2206.07212. [Google Scholar]
- Fernández, J.; Bornn, L.; Cervone, D. Decomposing the Immeasurable Sport: A deep learning expected possession value framework for soccer. In MIT Sloan Sports Analytics Conference; MIT Press: Cambridge, MA, USA, 2019; pp. 1–18. [Google Scholar]
- Fernández, J.; Bornn, L.; Cervone, D. A framework for the fine—Grained evaluation of the instantaneous expected value of soccer possessions. Mach. Learn. 2021, 110, 1389–1427. [Google Scholar] [CrossRef] [PubMed]
- Cervone, D.; D’Amour, A.; Bornn, L.; Goldsberry, K. A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes. J. Am. Stat. Assoc. 2016, 111, 585–599. [Google Scholar] [CrossRef]
- Caetano, F.G.; Junior, S.B.; Torres, S.; Cunha, S.A.; Régis, P.; Ruffino, C.; Eduardo, L.; Martins, B.; Moura, F.A. Football player dominant region determined by a novel model based on instantaneous kinematics variables. Sci. Rep. 2021, 11, 18209. [Google Scholar] [CrossRef] [PubMed]
- Raab, M. Decision making in sports: Influence of complexity on implicit and explicit learning. Int. J. Sport Exerc. Psychol. 2010, 1, 406–433. [Google Scholar] [CrossRef]
- Link, D.; Hoernig, M. Individual ball possession in soccer. PLoS ONE 2017, 12, e0179953. [Google Scholar] [CrossRef]
- Mateus, J. In pursuit of an ecological and fractal approach to soccer coaching. In Proceedings of the 5th World Congress on Science and Football Science and Football, Lisbon, Portugal, 11–15 April 2003; pp. 561–573. [Google Scholar]
- Di Salvo, V.; Collins, A.; McNeill, B.; Cardinale, M. Validation of Prozone ®: A new video-based performance analysis system. Int. J. Perform. Anal. Sport 2006, 6, 108–119. [Google Scholar] [CrossRef]
- Kim, S. Voronoi Analysis of a Soccer Game. Nonlinear Anal. Model. Control 2004, 9, 233–240. [Google Scholar] [CrossRef]
- Gréhaigne, J.F.; Bouthier, D.; David, B. Dynamic-system analysis of opponent relationships in collective actions in soccer. J. Sport. Sci. 1997, 15, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Amon, M.J.; Vrzakova, H.; D’Mello, S.K. Beyond Dyadic Coordination: Multimodal Behavioral Irregularity in Triads Predicts Facets of Collaborative Problem Solving. Cogn. Sci. 2019, 43, e12787. [Google Scholar] [CrossRef] [PubMed]
- Bühn, S.; Ober, P.; Mathes, T.; Wegewitz, U.; Jacobs, A.; Pieper, D. Measuring test-retest reliability (TRR) of AMSTAR provides moderate to perfect agreement—A contribution to the discussion of the importance of TRR in relation to the psychometric properties of assessment tools. BMC Med. Res. Methodol. 2021, 21, 51. [Google Scholar] [CrossRef]
- Hughes, C. The Winning Formula; Collins: Charlotte, NC, USA, 1990. [Google Scholar]
- Queiroz, C. Estrutura e Organização dos Exercícios em Futebol; Federação Portuguesa de Futebol: Lisboa, Portugal, 1986. [Google Scholar]
- Garganta, J.; Gréhaigne, J.F. Abordagem Sistêmica Do Jogo De Futebol: Moda Ou Necessidade? Mov. (ESEFID/UFRGS) 1999, 5, 40–50. [Google Scholar] [CrossRef]
- Rothwell, M.; Davids, K.; Stone, J. Harnessing Socio-cultural Constraints on Athlete Development to Create a Form of Life. J. Expert. 2018, 1, 94–102. [Google Scholar]
- Santos, S.; Jones, R.L.; Mesquita, I. Do coaches orchestrate? the working practices of elite portuguese coaches. Res. Q. Exerc. Sport 2013, 84, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Efthimiou, C.J. The Voronoi Diagram in Soccer: A theoretical study to measure dominance space. arXiv 2021, arXiv:2107.05714. [Google Scholar] [CrossRef]
- Taki, T.; Hasegawa, J. Visualization of dominant region in team games and its application to teamwork analysis. In Proceedings of the Computer Graphics International Conference (CGI), Geneva, Switzerland, 19–24 June 2000; pp. 227–235. [Google Scholar] [CrossRef]
- Rein, R.; Raabe, D.; Memmert, D. “Which pass is better?” Novel approaches to assess passing effectiveness in elite soccer. Hum. Mov. Sci. 2017, 55, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, M.; Davids, K.; Stone, J.A.; Sullivan, M.O. A Department of Methodology Can Coordinate Transdisciplinary Sport Science Support. J. Expert. 2020, 3, 55–65. [Google Scholar]
- Christensen, M. "An Eye for Talent": Talent Identification and the “Practical Sense” of Top-Level Soccer Coaches. Sociol. Sport J. 2009, 26, 365–382. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Horton, M. Spatio-temporal analysis of team sports. ACM Computing Surveys 2017, 50, 1–34. [Google Scholar] [CrossRef]
- Filetti, C.; Ruscello, B.; D’Ottavio, S.; Fanelli, V. A Study of Relationships among Technical, Tactical, Physical Parameters and Final Outcomes in Elite Soccer Matches as Analyzed by a Semiautomatic Video Tracking System. Percept. Mot. Ski. 2017, 124, 601–620. [Google Scholar] [CrossRef] [PubMed]
- Bornn, L.; Cervone, D.; Fernandez, J. Soccer analytics: Unravelling the complexity of “the beautiful game”. Significance 2018, 15, 26–29. [Google Scholar] [CrossRef]
- Dicks, M.; Davids, K.; Button, C. Representative task designs for the study of perception and action in sport. Int. J. Sport Psychol. 2009, 40, 506–524. [Google Scholar]
- Headrick, J.; Davids, K.; Renshaw, I.; Araújo, D.; Passos, P.; Fernandes, O. Proximity-to-goal as a constraint on patterns of behaviour in attacker–defender dyads in team games. J. Sport. Sci. 2012, 30, 247–253. [Google Scholar] [CrossRef]
EPS Region | Formulas for the Ball Carrier (BC) |
---|---|
INS | |
OUT_F | |
OUT_S | |
OUT_S_F |
EPS Region | Formulas for the Ball Carrier’s Teammates (NB) |
---|---|
INS | |
OUT_F | |
OUT_S | |
OUT_S_F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldeira, N.; Lopes, R.J.; Araujo, D.; Fernandes, D. The Finishing Space Value for Shooting Decision-Making in High-Performance Football. Sports 2024, 12, 208. https://doi.org/10.3390/sports12080208
Caldeira N, Lopes RJ, Araujo D, Fernandes D. The Finishing Space Value for Shooting Decision-Making in High-Performance Football. Sports. 2024; 12(8):208. https://doi.org/10.3390/sports12080208
Chicago/Turabian StyleCaldeira, Nelson, Rui J. Lopes, Duarte Araujo, and Dinis Fernandes. 2024. "The Finishing Space Value for Shooting Decision-Making in High-Performance Football" Sports 12, no. 8: 208. https://doi.org/10.3390/sports12080208
APA StyleCaldeira, N., Lopes, R. J., Araujo, D., & Fernandes, D. (2024). The Finishing Space Value for Shooting Decision-Making in High-Performance Football. Sports, 12(8), 208. https://doi.org/10.3390/sports12080208