Effect of Knee Angle, Contractile Activity, and Intensity of Force Production on Vastus Lateralis Stiffness: A Supersonic Shear Wave Elastography Pilot Study †
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Protocol
2.3. Region of Interest
2.4. Shear Wave Imaging
2.5. Data Processing
2.6. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gennisson, J.-L.L.; Deffieux, T.; Macé, E.; Montaldo, G.; Fink, M.; Tanter, M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med. Biol. 2010, 36, 789–801. [Google Scholar] [CrossRef]
- Koo, T.K.; Guo, J.Y.; Cohen, J.H.; Parker, K.J. Relationship between shear elastic modulus and passive muscle force: An ex-vivo study. J. Biomech. 2013, 46, 2053–2059. [Google Scholar] [CrossRef]
- Klauser, A.; Miyamoto, H.; Bellmann-Weiler, R.; Feuchtner, G.; Wick, M.; Jaschke, W. Sonoelastography: Musculoskeletal applications. Radiology 2014, 272, 622–633. [Google Scholar] [CrossRef]
- Shoji, S.; Hashimoto, A.; Nakamura, T.; Hiraiwa, S.; Sato, H.; Sato, Y.; Tajiri, T.; Miyajima, A. Novel application of three-dimensional shear wave elastography in the detection of clinically significant prostate cancer. Biomed. Rep. 2018, 8, 373–377. [Google Scholar] [CrossRef]
- Koo, T.K.; Guo, J.-Y.; Cohen, J.H.; Parker, K.J. Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography. Clin. Biomech. 2014, 29, 33–39. [Google Scholar] [CrossRef]
- Miyamoto, N.; Hirata, K.; Kanehisa, H.; Yoshitake, Y. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle. PLoS ONE 2015, 10, e0124311. [Google Scholar] [CrossRef]
- Santos, R.; Loft, M.K.; Pedersen, M.R.V. Elastography of the Male Pelvic Region—Perspectives on malignant Lesions. Diagnostics 2024, 14, 1218. [Google Scholar] [CrossRef]
- Mifsud, T.; Chatzistergos, P.; Maganaris, C.; Chockalingam, N.; Padhiar, N.; Stafrace, K.M.; Gatt, A. Supersonic shear wave elastography of human tendons is associated with in vivo tendon stiffness over small strains. J. Biomech. 2023, 152, 111558. [Google Scholar] [CrossRef]
- Pedersen, M.; Fredberg, U.; Langberg, H.; Hospital, B.; Silkeborg, R.H.; Rehab, C.; Pedersen, M.; Sciences, H. Sonoelastography as a Diagnostic Tool in the Assessment of Musculoskeletal Alterations: A Systematic Review Sonoelastografie als Diagnoseverfahren, um muskuloskelettale Veränderungen. Ultraschall Med. 2012, 33, 441–446. [Google Scholar]
- Ryu, J.; Jeong, W.K. Current status of musculoskeletal application of shear wave elastography. Ultrasonography 2017, 36, 185. [Google Scholar] [CrossRef]
- Smajlovic, F.; Carovac, A.; Bulja, D. Sonoelastography: The method of choice for evaluation of tissue elasticity. J. Health Sci. 2011, 1, 50–55. [Google Scholar] [CrossRef]
- Santos, R.; Valamatos, M.J.; Mil-Homens, P.; Armada-Da-Silva, P. The Effect of Strength Training on Vastus Lateralis’ Stiffness: An Ultrasound Quasi-Static Elastography Study. Int. J. Environ. Res. Public Health 2020, 17, 4381. [Google Scholar] [CrossRef] [PubMed]
- Ateş, F.; Hug, F.; Bouillard, K.; Jubeau, M.; Frappart, T.; Couade, M.; Bercoff, J.; Nordez, A. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity. J. Electromyogr. Kinesiol. 2015, 25, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Akagi, R.; Shikiba, T.; Tanaka, J.; Takahashi, H. A Six-Week Resistance Training Program Does Not Change Shear Modulus of the Triceps Brachii. J. Appl. Biomech. 2016, 32, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Ikezoe, T.; Kobayashi, T.; Umegaki, H.; Takeno, Y.; Nishishita, S.; Ichihashi, N. Acute effects of static stretching on muscle hardness of the medial gastrocnemius muscle belly in humans: An ultrasonic shear-wave elastography study. Ultrasound Med. Biol. 2014, 40, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Umegaki, H.; Ikezoe, T.; Nakamura, M.; Nishishita, S.; Kobayashi, T.; Fujita, K.; Tanaka, H.; Ichihashi, N. Acute effects of static stretching on the hamstrings using shear elastic modulus determined by ultrasound shear wave elastography: Differences in flexibility between hamstring muscle components. Man. Ther. 2015, 20, 610–613. [Google Scholar] [CrossRef]
- Valamatos, M.J.; Tavares, F.; Santos, R.M.; Veloso, A.P.; Mil-homens, P. Influence of full range of motion vs. equalized partial range of motion training on muscle architecture and mechanical properties. Eur. J. Appl. Physiol. 2018, 118, 1969–1983. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Muraki, T.; Sekiguchi, Y.; Ishijima, T.; Morise, S.; Yamamoto, N.; Itoi, E.; Izumi, S.I. Noninvasive assessment of the activity of the shoulder girdle muscles using ultrasound real-time tissue elastography. J. Electromyogr. Kinesiol. 2015, 25, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Raiteri, B.J.; Hug, F.; Cresswell, A.G.; Lichtwark, G.A. Quantification of muscle co-contraction using supersonic shear wave imaging. J. Biomech. 2016, 49, 493–495. [Google Scholar] [CrossRef]
- Akagi, R.; Kusama, S. Comparison Between Neck and Shoulder Stiffness Determined by Shear Wave Ultrasound Elastography and a Muscle Hardness Meter. Ultrasound Med. Biol. 2015, 41, 2266–2271. [Google Scholar] [CrossRef]
- Eby, S.F.; Cloud, B.A.; Brandenburg, J.E.; Giambini, H.; Song, P.; Chen, S.; Lebrasseur, N.K.; An, K.N. Shear wave elastography of passive skeletal muscle stiffness: Influences of sex and age throughout adulthood. Clin. Biomech. 2015, 30, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Carrão, L.; Santos, R.; Espanha, M.; Armada-da-Silva, P.; Amaral, A.; Amado, S.; Almeida, H.A.; Faria, P.; Veloso, A. The Role of Ultrasound Imaging of Musculotendinous Structures in the Elderly Population; Springer: Cham, Switzerland, 2018; Volume 29. [Google Scholar]
- Lacourpaille, L.; Hug, F.; Guevel, A.; Pereon, Y.; Magot, A.; Hogrel, J.-Y.; Nordez, A. New insights on contraction efficiency in patients with Duchenne muscular dystrophy. J. Appl. Physiol. 2014, 117, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Murayama, M.; Watanabe, K.; Kato, R.; Uchiyama, T.; Yoneda, T. Association of muscle hardness with muscle tension dynamics: A physiological property. Eur. J. Appl. Physiol. 2012, 112, 105–112. [Google Scholar] [CrossRef]
- Santos, R. Morphological Ultrasound Evaluation in Acute and Chronic Muscle Overloading. Doctoral Dissertation, Universidade de Lisboa, Faculdade de Motricidade Humana, Lisbon, Portugal, 2017. [Google Scholar]
- Nordez, A.; Cornu, C.; McNair, P. Acute effects of static stretching on passive stiffness of the hamstring muscles calculated using different mathematical models. Clin. Biomech. 2006, 21, 755–760. [Google Scholar] [CrossRef]
- Bercoff, J.; Tanter, M.; Fink, M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 396–409. [Google Scholar] [CrossRef]
- Gennisson, J.-L.; Deffieux, T.; Fink, M.; Tanter, M. Ultrasound elastography: Principles and techniques. Diagn. Interv. Imaging 2013, 94, 487–495. [Google Scholar] [CrossRef]
- Le Sant, G.; Ates, F.; Brasseur, J.L.; Nordez, A. Elastography study of hamstring behaviors during passive stretching. PLoS ONE 2015, 10, e0139272. [Google Scholar] [CrossRef]
- Santos, R.; Armada-da-silva, P.A.S.A.S. Reproducibility of ultrasound-derived muscle thickness and echo-intensity for the entire quadriceps femoris muscle. Radiography 2017, 23, e51–e61. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, Y.; Takai, Y.; Kanehisa, H.; Shinohara, M. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity. Muscle Nerve 2014, 50, 103–113. [Google Scholar] [CrossRef]
- Ishikawa, H.; Muraki, T.; Morise, S.; Sekiguchi, Y.; Yamamoto, N.; Itoi, E.; Izumi, S.-I. Changes in stiffness of the dorsal scapular muscles before and after computer work: A comparison between individuals with and without neck and shoulder complaints. Eur. J. Appl. Physiol. 2017, 117, 179–187. [Google Scholar] [CrossRef]
- Nordez, A.; Guével, A.; Casari, P.; Catheline, S.; Cornu, C. Assessment of muscle hardness changes induced by a submaximal fatiguing isometric contraction. J. Electromyogr. Kinesiol. 2009, 19, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Lacourpaille, L.; Nordez, A.; Hug, F.; Couturier, A.; Dibie, C.; Guilhem, G. Time-course effect of exercise-induced muscle damage on localized muscle mechanical properties assessed using elastography. Acta Physiol. 2014, 211, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, J.; Charlot, K.; Malgoyre, A.; Conort, S.; Tardo-Dino, P.E.; Bourrilhon, C.; Garcia-Vicencio, S. Resting muscle shear modulus measured with ultrasound shear-wave elastography as an alternative tool to assess muscle fatigue in humans. Front. Physiol. 2019, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Vatovec, R.; Kozinc, Ž.; Voglar, M. The Effects of Isometric Fatigue on Trunk Muscle Stiffness: Implications for Shear-Wave Elastography Measurements. Sensors 2022, 22, 9476. [Google Scholar] [CrossRef] [PubMed]
- Dubois, G.; Kheireddine, W.; Vergari, C.; Bonneau, D.; Thoreux, P.; Rouch, P.; Tanter, M.; Gennisson, J.L.; Skalli, W. Reliable Protocol for Shear Wave Elastography of Lower Limb Muscles at Rest and During Passive Stretching. Ultrasound Med. Biol. 2015, 41, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Biel, P.; Zubik, M.; Filip-Stachnik, A.; Ewertowska, P.; Krzysztofik, M. Acute effects of unilateral and bilateral conditioning activity on countermovement jump, linear speed, and muscle stiffness: A randomized crossover study. PLoS ONE 2023, 13, e0292999. [Google Scholar] [CrossRef] [PubMed]
- Chalchat, E.; Siracusa, J.; Bourrilhon, C.; Charlot, K.; Martin, V.; Garcia-Vicencio, S. Muscle Shear Elastic Modulus Provides an Indication of the Protection Conferred by the Repeated Bout Effect. Front. Physiol. 2022, 13, 877485. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Gill, N.D.; Zhou, S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J. Anat. 2006, 209, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, A.; Andrade, R.; Le Sant, G.; Falla, D.; Petzke, F.; Hug, F.; Nordez, A. Shear wave elastography reveals different degrees of passive and active stiffness of the neck extensor muscles. Eur. J. Appl. Physiol. 2017, 117, 171–178. [Google Scholar] [CrossRef]
- Maïsetti, O.; Hug, F.; Bouillard, K.; Nordez, A. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J. Biomech. 2012, 45, 978–984. [Google Scholar] [CrossRef]
- Hug, F.; Lacourpaille, L.; Maïsetti, O.; Nordez, A. Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles. J. Biomech. 2013, 46, 2534–2538. [Google Scholar] [CrossRef] [PubMed]
- Levinson, S.F.; Shinagawa, M.; Sato, T. Sonoelastic determination of human skeletal-muscle elasticity. J. Biomech. 1995, 28, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Nordez, A.; Gennisson, J.L.; Casari, P.; Catheline, S.; Cornu, C. Characterization of muscle belly elastic properties during passive stretching using transient elastography. J. Biomech. 2008, 41, 2305–2311. [Google Scholar] [CrossRef] [PubMed]
- Akagi, R.; Tanaka, J.; Shikiba, T.; Takahashi, H. Muscle hardness of the triceps brachii before and after a resistance exercise session: A shear wave ultrasound elastography study. Acta Radiol. 2015, 56, 1487–1493. [Google Scholar] [CrossRef] [PubMed]
- Krzysztofik, M.; Spieszny, M.; Trybulski, R.; Wilk, M.; Pisz, A.; Kolinger, D.; Filip-Stachnik, A.; Stastny, P. Acute effects of isometric conditioning activity on the viscoelastic properties of muscles and sprint and jumping performance in handball players. J. Strength Cond. Res. 2023, 37, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Akagi, R.; Yamashita, Y.; Ueyasu, Y. Age-related differences in muscle shear moduli in the lower extremity. Ultrasound Med. Biol. 2015, 41, 2906–2912. [Google Scholar] [CrossRef]
- Andonian, P.; Viallon, M.; Le Goff, C.; De Bourguignon, C.; Tourel, C.; Morel, J.; Giardini, G.; Gergele, L.; Millet, G.P.; Croisille, P. Shear-wave elastography assessments of quadriceps stiffness changes prior to, during and after prolonged exercise: A longitudinal study during an extreme mountain ultra-marathon. PLoS ONE 2016, 11, e0161855. [Google Scholar] [CrossRef]
- Gennisson, J.L.; Cornu, C.; Catheline, S.; Fink, M.; Portero, P. Human muscle hardness assessment during incremental isometric contraction using transient elastography. J. Biomech. 2005, 38, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Bouillard, K.; Jubeau, M.; Nordez, A.; Hug, F. Effect of vastus lateralis fatigue on load sharing between quadriceps femoris muscles during isometric knee extensions. J. Neurophysiol. 2014, 111, 768–776. [Google Scholar] [CrossRef]
- Bouillard, K.; Nordez, A.; Hug, F. Estimation of individual muscle force using elastography. PLoS ONE 2011, 6, e29261. [Google Scholar] [CrossRef]
Test | Factor Knee Angle | Factor Pre–Post | Interaction Effect | ||||||
---|---|---|---|---|---|---|---|---|---|
Degrees of Freedom Factor; Error | F-Ratio | p-Value | Degrees of Freedom Factor; Error | F-Ratio | p-Value | Degrees of Freedom Factor; Error | F-Ratio | p-Value | |
Pre vs. Post all contractions | 2, 28 | 43.467 | <0.001 | 1, 14 | 8.122 | 0.013 | 2, 28 | 0.160 | 0.853 |
Pre vs. Post isometric | 2, 28 | 31.067 | <0.001 | 1, 14 | 9.356 | 0.009 | 2, 28 | 1.67 | 0.847 |
Pre vs. Post concentric | 2, 28 | 43.675 | <0.001 | 1, 14 | 4.358 | 0.056 | 2, 28 | 1.516 | 0.237 |
Pre vs. Post eccentric | 2, 28 | 25.612 | <0.001 | 1, 14 | 6.512 | 0.023 | 2, 28 | 0.963 | 0.394 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, R.; Valamatos, M.J.; Mil-Homens, P.; Armada-da-Silva, P.A.S. Effect of Knee Angle, Contractile Activity, and Intensity of Force Production on Vastus Lateralis Stiffness: A Supersonic Shear Wave Elastography Pilot Study. Sports 2024, 12, 211. https://doi.org/10.3390/sports12080211
Santos R, Valamatos MJ, Mil-Homens P, Armada-da-Silva PAS. Effect of Knee Angle, Contractile Activity, and Intensity of Force Production on Vastus Lateralis Stiffness: A Supersonic Shear Wave Elastography Pilot Study. Sports. 2024; 12(8):211. https://doi.org/10.3390/sports12080211
Chicago/Turabian StyleSantos, Rute, Maria João Valamatos, Pedro Mil-Homens, and Paulo A. S. Armada-da-Silva. 2024. "Effect of Knee Angle, Contractile Activity, and Intensity of Force Production on Vastus Lateralis Stiffness: A Supersonic Shear Wave Elastography Pilot Study" Sports 12, no. 8: 211. https://doi.org/10.3390/sports12080211
APA StyleSantos, R., Valamatos, M. J., Mil-Homens, P., & Armada-da-Silva, P. A. S. (2024). Effect of Knee Angle, Contractile Activity, and Intensity of Force Production on Vastus Lateralis Stiffness: A Supersonic Shear Wave Elastography Pilot Study. Sports, 12(8), 211. https://doi.org/10.3390/sports12080211