The Relationship between Functional Movement Quality and Speed, Agility, and Jump Performance in Elite Female Youth Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Measurement Procedure
2.4. Functional Movement Screen (FMS)
2.5. Speed
2.6. Agility
2.7. Jumping Performance
2.8. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mustafovic, E.; Causevic, D.; Covic, N.; Ibrahimovic, M.; Alic, H.; Abazovic, E.; Masic, S. Talent Identification in Youth Football: A Systematic Review. J. Anthropol. Sport Phys. Educ. 2020, 4, 37–43. [Google Scholar]
- Kramer, T.A.; Sacko, R.S.; Pfeifer, C.E.; Gatens, D.R.; Goins, J.M.; Stodden, D.F. The association between the functional movement screentm, Y-balance test, and physical performance tests in male and female high school athletes. Int. J. Sports Phys. Ther. 2019, 14, 911. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.H.; Seo, T.B.; Kim, Y.P. Relationship between movement dysfunctions and sports injuries according to gender of youth soccer player. J. Exerc. Rehabil. 2020, 16, 427. [Google Scholar] [CrossRef]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 1. N. Am. J. Sports Phys. Ther. 2006, 1, 62–72. [Google Scholar] [PubMed]
- Smith, L.J.; Creps, J.R.; Bean, R.; Rodda, B.; Alsalaheen, B. Performance of high school male athletes on the Functional Movement Screen™. Phys. Ther. Sport 2017, 27, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, E.M.; Stevens, S.L.; Fuller, D.K.; Coons, J.M.; Morgan, D.W. Functional movement screen items predict dynamic balance under military torso load. Mil. Med. 2020, 185, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Parchmann, C.J.; McBride, J.M. Relationship between functional movement screen and athletic performance. J. Strength Cond. Res. 2011, 25, 3378–3384. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. A preliminary investigation into the relationship between functional movement screen scores and athletic physical performance in female team sport athletes. Biol. Sport 2015, 32, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Huxel, K.C.; Nesser, T.W. Relationship between core stability, functional movement, and performance. J. Strength Cond. Res. 2011, 25, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Radnor, J.M.; Rhodes, B.C.; Faigenbaum, A.D.; Myer, G.D. Relationships between functional movement screen scores, maturation and physical performance in young soccer players. J. Sports Sci. 2015, 33, 11–19. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, J.; Wei, H.; Liu, H. Relationships between Functional Movement Quality and Sprint and Jump Performance in Female Youth Soccer Athletes of Team China. Children 2022, 9, 1312. [Google Scholar] [CrossRef] [PubMed]
- Čović, N.; Čaušević, D.; Alexe, C.I.; Rani, B.; Dulceanu, C.R.; Abazović, E.; Lupu, G.S.; Alexe, D.I. Relations between specific athleticism and morphology in young basketball players. Front. Sports Act. Living 2023, 5, 1276953. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 2. N. Am. J. Sports Phys. Ther. 2006, 1, 132–139. [Google Scholar]
- McCunn, R.; aus der Fünten, K.; Fullagar, H.H.; McKeown, I.; Meyer, T. Reliability and association with injury of movement screens: A critical review. Sports Med. 2016, 46, 763–781. [Google Scholar] [CrossRef]
- Zelenović, M.; Kontro, T.; Čaušević, D.; Bjelica, B.; Aksović, N.; Milanović, Z. Warm-up is an efficient strategy to prevent diur-nal variation of short-term maximal performance in young basketball players. Chronobiol. Int. 2024, 41, 439–446. [Google Scholar] [CrossRef]
- Krolo, A.; Gilic, B.; Foretic, N.; Pojskic, H.; Hammami, R.; Spasic, M.; Uljevic, O.; Versic, S.; Sekulic, D. Agility testing in youth football (soccer) players; evaluating reliability, validity, and correlates of newly developed testing protocols. Int. J. Environ. Res. Public Health 2020, 17, 294. [Google Scholar] [CrossRef]
- Čaušević, D.; Čović, N.; Abazović, E.; Rani, B.; Manolache, G.M.; Ciocan, C.V.; Zaharia, G.; Alexe, D.I. Predictors of speed and agility in youth male basketball players. Appl. Sci. 2023, 13, 7796. [Google Scholar] [CrossRef]
- Yapici, H.; Soylu, Y.; Gulu, M.; Kutlu, M.; Ayan, S.; Muluk, N.B.; Aldhahi, M.I.; AL-Mhanna, S.B. Agility Skills, Speed, Balance and CMJ Performance in Soccer: A Comparison of Players with and without a Hearing Impairment. Healthcare 2023, 11, 247. [Google Scholar] [CrossRef] [PubMed]
- Matsentides, D.; Christou, M.; Zaras, N. The Effects of Different Re-Warm-Up Strategies on Power, Changing of Direction and Ball Shooting Velocity in Well-Trained Soccer Players. Sports 2023, 11, 169. [Google Scholar] [CrossRef]
- Čaušević, D.; Mašić, S.; Doder, I.; Matulaitis, K.; Spicer, S. Speed, agility and power potential of young basketball players. Balt. J. Sport Health Sci. 2022, 4, 29–34. [Google Scholar] [CrossRef]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.; Frantz, B.A.; Bemben, M.G. Countermovement jump reliability performed with and without an arm swing in NCAA division 1 intercollegiate basketball players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Gidu, D.V.; Badau, D.; Stoica, M.; Aron, A.; Focan, G.; Monea, D.; Stoica, A.M.; Calota, N.D. The Effects of Proprioceptive Training on Balance, Strength, Agility and Dribbling in Adolescent Male Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 2028. [Google Scholar] [CrossRef]
- Martín-Moya, R.; Rodríguez-García, L.; Moreno-Vecino, B.; Clemente, F.M.; González, A.L.; González-Fernández, F.T. Differences and relationship in functional movement screen (FMS™) scores and physical fitness in males and female semi-professional soccer players. PeerJ 2023, 11, e16649. [Google Scholar] [CrossRef] [PubMed]
- Fitton Davies, K.; Sacko, R.S.; Lyons, M.A.; Duncan, M.J. Association between Functional Movement Screen scores and athletic performance in adolescents: A systematic review. Sports 2022, 10, 28. [Google Scholar] [CrossRef]
- Bennett, H.; Fuller, J.; Milanese, S.; Jones, S.; Moore, E.; Chalmers, S. Relationship between movement quality and physical performance in elite adolescent Australian football players. J. Strength Cond. Res. 2022, 36, 2824–2829. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.; Chalmers, S.; Milanese, S.; Fuller, J.T. Factors influencing the relationship between the functional movement screen and injury risk in sporting populations: A systematic review and meta-analysis. Sports Med. 2019, 49, 1449–1463. [Google Scholar] [CrossRef]
- Delecluse, C. Influence of strength training on sprint running performance: Current findings and implications for training. Sports Med. 1997, 24, 147–156. [Google Scholar] [CrossRef]
- Mašić, S.; Čaušević, D.; Čović, N.; Spicer, S.; Doder, I. The benefits of static stretching on health: A systematic review. J. Kinesiol. Exerc. Sci. 2024, 34, 1–7. [Google Scholar] [CrossRef]
- Kritz, M.; Cronin, J.; Hume, P. The bodyweight squat: A movement screen for the squat pattern. Strength Cond. J. 2009, 31, 76–85. [Google Scholar] [CrossRef]
- Alicea-Kulian, K.; Thomas, K.; Wolf, D.; Cuestas, R.V.; Wall, J.; Avery, A.; Batchelor, V.; Crowley, S.; Magal, M. Does Lower Extremity Fms Performance Predict Vertical Jump Height In Female Ncaa Division Iii Footballers. In Proceedings of the Medicine and Science in Sports and Exercise, Virtual, 27 May 2020; p. 50. [Google Scholar]
- Gherghel, A.; Badau, D.; Badau, A.; Moraru, L.; Manolache, G.M.; Oancea, B.M.; Tifrea, C.; Tudor, V.; Costache, R.M. Optimizing the Explosive Force of the Elite Level Football-Tennis Players through Plyometric and Specific Exercises. Int. J. Environ. Res. Public Health 2021, 18, 8228. [Google Scholar] [CrossRef]
Score | Criteria |
---|---|
0 | The participant experiences pain in any part of the body at any point during the test. |
1 | The participant either fails to finish the movement pattern or is unable to acquire the position required to conduct the movement. |
2 | The participant may finish the exercise but does so with compensation(s). |
3 | The participant can complete the activity accurately without any assistance. |
Variables | Total (n = 22) | Striker (n = 4) | Midfielder (n = 9) | Fullback (n = 7) | Goalkeeper (n = 2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Age (years) | 15.59 | 0.57 | 15.90 | 0.27 | 15.42 | 0.66 | 15.55 | 0.51 | 15.90 | 0.84 |
Body height (cm) | 168.30 | 6.43 | 167.05 | 9.98 | 167.64 | 6.79 | 169.24 | 4.30 | 170.45 | 7.99 |
Body mass (kg) | 59.83 | 7.25 | 60.52 | 12.02 | 57.46 | 7.00 | 62.17 | 3.26 | 60.90 | 11.03 |
BMI (kg/m2) | 21.06 | 1.57 | 21.52 | 2.14 | 20.38 | 1.46 | 21.71 | 1.26 | 20.90 | 1.83 |
PBF (%) | 20.49 | 3.49 | 21.00 | 4.41 | 19.15 | 2.98 | 21.85 | 3.14 | 20.75 | 6.15 |
FFM (kg) | 47.42 | 4.87 | 47.62 | 8.30 | 46.38 | 5.42 | 48.51 | 1.45 | 47.90 | 4.94 |
FMS score | 16.50 | 2.22 | 17.25 | 1.50 | 15.88 | 3.05 | 17.28 | 1.11 | 15.00 | 0.00 |
Deep squat | 2.45 | 0.59 | 2.50 | 0.58 | 2.33 | 0.70 | 2.71 | 0.48 | 2.00 | 0.00 |
Hurdle step | 2.36 | 0.66 | 2.75 | 0.50 | 2.33 | 0.70 | 2.28 | 0.75 | 2.00 | 0.00 |
In-line lunge | 2.59 | 0.59 | 3.00 | 0.00 | 2.44 | 0.72 | 2.71 | 0.48 | 2.00 | 0.00 |
Shoulder mobility | 2.59 | 0.66 | 2.50 | 1.00 | 2.33 | 0.70 | 2.85 | 0.37 | 3.00 | 0.00 |
ASLR | 2.59 | 0.50 | 2.25 | 0.50 | 2.55 | 0.52 | 2.71 | 0.48 | 3.00 | 0.00 |
TSPU | 1.86 | 0.83 | 2.00 | 0.52 | 1.88 | 0.93 | 2.00 | 0.81 | 1.00 | 0.00 |
Rotary stability | 2.04 | 0.21 | 2.25 | 0.50 | 2.00 | 0.00 | 2.00 | 0.00 | 2.00 | 0.00 |
CMJ free arms (cm) | 28.88 | 4.01 | 28.47 | 2.80 | 29.95 | 3.86 | 27.70 | 5.19 | 29.00 | 3.39 |
Zig-zag (s) | 6.29 | 0.29 | 6.41 | 0.26 | 6.24 | 0.24 | 6.22 | 0.39 | 6.49 | 0.91 |
T-test (s) | 11.37 | 0.54 | 11.91 | 0.54 | 11.12 | 0.38 | 11.31 | 0.56 | 11.61 | 0.53 |
5 m sprint (s) | 1.12 | 0.06 | 1.17 | 0.09 | 1.12 | 0.06 | 1.08 | 0.05 | 1.13 | 0.14 |
10 m sprint (s) | 1.94 | 0.08 | 2.00 | 0.10 | 1.95 | 0.07 | 1.90 | 0.09 | 1.93 | 0.14 |
20 m sprint (s) | 3.38 | 0.15 | 3.48 | 0.16 | 3.40 | 0.13 | 3.31 | 0.16 | 3.36 | 0.03 |
30 m sprint (s) | 4.78 | 0.22 | 4.92 | 0.23 | 4.80 | 0.20 | 4.67 | 0.24 | 4.79 | 0.04 |
Variables | CMJ Free Arms | Zig-Zag | T-Test | 5 m | 10 m | 20 m | 30 m |
---|---|---|---|---|---|---|---|
FMS score | 0.17 (−0.27, 0.55) | −0.13 (−0.52, 0.31) | −0.18 (−0.56, 0.26) | −0.27 (−0.62, 0.17) | −0.14 (−0.53, 0.30) | −0.18 (−0.56, 0.26) | −0.21 (−0.58, 0.23) |
Deep squat | 0.22 (−0.22, 0.59) | −0.17 (−0.55, 0.27) | −0.15 (−0.54, 0.29) | −0.11 (−0.51, 0.33) | 0.17 (−0.27, 0.55) | −0.17 (−0.55, 0.27) | 0.09 (−0.34, 0.49) |
Hurdle step | 0.13 (−0.31, 0.52) | −0.15 (−0.54, 0.29) | −0.14 (−0.53, 0.29) | −0.19 (−0.57, 0.25) | −0.08 (−0.49, 0.35) | −0.11 (−0.51, 0.33) | −0.17 (−0.55, 0.27) |
In-line lunge | 0.28 (−0.16, 0.62) | −0.44 * (−0.72, −0.02) | −0.19 (−0.57, 0.25) | −0.10 (−0.50, 0.34) | −0.06 (−0.47, 0.37) | −0.10 (−0.50, 0.34) | −0.09 (−0.49, 0.34) |
Shoulder mobility | 0.20 (−0.24, 0.57) | −0.39 * (−0.70, 0.03) | −0.39 * (−0.70, 0.04) | −0.42 * (−0.72, 0.00) | −0.38 * (−0.69,0.05) | −0.29 (−0.63, 0.15) | −0.28 (−0.63, 0.16) |
ASLR | 0.45 * (0.03, 0.73) | −0.30 (−0.64, 0.14) | −0.30 (−0.64, 0.14) | −0.35 (−0.67, 0.08) | −0.41 * (−0.71, 0.01) | −0.47 * (−0.74, −0.06) | −0.46 * (−0.73, −0.05) |
TSPU | 0.06 (−0.38, 0.47) | −0.24 (−0.60, 0.20) | −0.17 (−0.55, 0.27) | −0.22 (−0.59, 0.22) | −0.16 (−0.54, 0.28) | −0.05 (−0.46, 0.38) | −0.07 (−0.48, 0.36) |
Rotary stability | 0.25 (−0.19, 0.61) | −0.02 (−0.44, 0.40) | −0.13 (−0.52, 0.31) | −0.18 (−0.56, 0.26) | −0.27 (−0.62, 0.17) | −0.23 (−0.59, 0.21) | −0.25 (−0.61, 0.19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexe, D.I.; Čaušević, D.; Čović, N.; Rani, B.; Tohănean, D.I.; Abazović, E.; Setiawan, E.; Alexe, C.I. The Relationship between Functional Movement Quality and Speed, Agility, and Jump Performance in Elite Female Youth Football Players. Sports 2024, 12, 214. https://doi.org/10.3390/sports12080214
Alexe DI, Čaušević D, Čović N, Rani B, Tohănean DI, Abazović E, Setiawan E, Alexe CI. The Relationship between Functional Movement Quality and Speed, Agility, and Jump Performance in Elite Female Youth Football Players. Sports. 2024; 12(8):214. https://doi.org/10.3390/sports12080214
Chicago/Turabian StyleAlexe, Dan Iulian, Denis Čaušević, Nedim Čović, Babina Rani, Dragoș Ioan Tohănean, Ensar Abazović, Edi Setiawan, and Cristina Ioana Alexe. 2024. "The Relationship between Functional Movement Quality and Speed, Agility, and Jump Performance in Elite Female Youth Football Players" Sports 12, no. 8: 214. https://doi.org/10.3390/sports12080214
APA StyleAlexe, D. I., Čaušević, D., Čović, N., Rani, B., Tohănean, D. I., Abazović, E., Setiawan, E., & Alexe, C. I. (2024). The Relationship between Functional Movement Quality and Speed, Agility, and Jump Performance in Elite Female Youth Football Players. Sports, 12(8), 214. https://doi.org/10.3390/sports12080214