Effect of Weighted Vest at 0%, 5% and 10% of Body Mass on Gasometry Biomarkers and Performance during a Rectangular Test in Trained Trail Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Tests
2.4.1. Medical Exam
2.4.2. Blood Samples
2.4.3. Anthropometry
2.4.4. Familiarization and Incremental Test Protocol
2.4.5. Blood Gas Analysis (ABL-90)
2.4.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Waal, S.J.; Gomez-Ezeiza, J.; Venter, R.E.; Lamberts, R.P. Physiological Indicators of Trail Running Performance: A Systematic Review. Int. J. Sports Physiol. Perform. 2021, 16, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Ehrström, S.; Tartaruga, M.P.; Easthope, C.S.; Brisswalter, J.; Morin, J.B.; Vercruyssen, F. Short Trail Running Race: Beyond the Classic Model for Endurance Running Performance. Med. Sci. Sports Exerc. 2018, 50, 580–588. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Knechtle, B.; Tarnopolsky, M.; Hoffman, M.D. Nutrition for Ultramarathon Running: Trail, Track, and Road. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Silder, A.; Besier, T.; Delp, S.L. Running with a load increases leg stiffness. J. Biomech. 2015, 48, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Busch, A.; Trounson, K.; Browne, P.; Robertson, S. Effects of lower limb light-weight wearable resistance on running biomechanics. J. Biomech. 2022, 130, 110903. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.B.; Simperingham, K.D. The Effects of Wearable Resistance Training on Metabolic, Kinematic and Kinetic Variables During Walking, Running, Sprint Running and Jumping: A Systematic Review. Sports Med. 2017, 47, 887–906. [Google Scholar] [CrossRef]
- Lobb, N.J.; Fain, A.C.; Seymore, K.D.; Brown, T.N. Sex and stride length impact leg stiffness and ground reaction forces when running with body borne load. J. Biomech. 2019, 86, 96–101. [Google Scholar] [CrossRef]
- Purdom, T.M.; Mermier, C.; Dokladny, K.; Moriarty, T.; Lunsford, L.; Cole, N.; Johnson, K.; Kravitz, L. Predictors of Fat Oxidation and Caloric Expenditure With and Without Weighted Vest Running. J. Strength. Cond. Res. 2021, 35, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Keren, G.; Epstein, Y.; Magazanik, A.; Sohar, E. The energy cost of walking and running with and without a backpack load. Eur J. Appl. Physiol. Occup. Physiol. 1981, 46, 317–324. [Google Scholar] [CrossRef]
- Jiménez-Redondo, G.; Castro-Frecha, B.; Martínez-Noguera, F.J.; Alcaraz, P.E.; Marín-Pagán, C. Physiological Responses in Trail Runners during a Maximal Test with Different Weighted-Vest Loads. Sports 2024, 12, 189. [Google Scholar] [CrossRef]
- Urbaniak, G.C.; Plous, S. Research Randomizer, version 4.0; Computer Software; Social Psychology Network: Middletown, OH, USA, 2013.
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; De Ridder, H. International Society for advancement of Kinanthropometry. In International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; pp. 50–53. [Google Scholar]
- Faulkner, J.A. Physiology of swimming. Res. Q. 1966, 37, 41–54. [Google Scholar] [CrossRef]
- Norton, K. Standards for Anthropometry Assessment. In Kinanthropometry and Exercise Physiology, 4th ed.; Norton, K., Eston, R., Eds.; Routledge: London, UK, 2018; pp. 68–137. [Google Scholar]
- Zuniga, J.M.; Housh, T.J.; Camic, C.L.; Bergstrom, H.C.; Traylor, D.A.; Schmidt, R.J.; Johnson, G.O. Metabolic parameters for ramp versus step incremental cycle ergometer tests. Appl. Physiol. Nutr. Metab. 2012, 37, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.; Cantrell, G.; Ade, C.; Farrell Iii, J.; Lantis, D.; Barton, M.; Laron, D. Physiologic responses to two distinct maximal cardiorespiratory exercise protocols. Int. J. Sports Exerc. Med. 2015, 1, 013. [Google Scholar] [CrossRef]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.-P. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Prev. Cardiol. 2008, 15, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Scherr, J.; Wolfarth, B.; Christle, J.W.; Pressler, A.; Wagenpfeil, S.; Halle, M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 2013, 113, 147–155. [Google Scholar] [CrossRef]
- Mier, C.M.; Alexander, R.P.; Mageean, A.L. Achievement of VO2max criteria during a continuous graded exercise test and a verification stage performed by college athletes. J. Strength. Cond. Res. 2012, 26, 2648–2654. [Google Scholar] [CrossRef]
- Zhang, J.B.; Lin, J.; Zhao, X.D. Analysis of bias in measurements of potassium, sodium and hemoglobin by an emergency department-based blood gas analyzer relative to hospital laboratory autoanalyzer results. PLoS ONE 2015, 10, e0122383. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Reprint; Psychology Press: New York, NY, USA, 2009; 567p. [Google Scholar]
- Cartón-Llorente, A.; Rubio-Peirotén, A.; Cardiel-Sánchez, S.; Roche-Seruendo, L.E.; Jaén-Carrillo, D. Training Specificity in Trail Running: A Single-Arm Trial on the Influence of Weighted Vest on Power and Kinematics in Trained Trail Runners. Sensors 2023, 23, 6411. [Google Scholar] [CrossRef]
- Birrell, S.A.; Haslam, R.A. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics 2009, 52, 1298–1304. [Google Scholar] [CrossRef]
- Birrell, S.A.; Hooper, R.H.; Haslam, R.A. The effect of military load carriage on ground reaction forces. Gait Posture 2007, 26, 611–614. [Google Scholar] [CrossRef]
- Kinoshita, H. Effects of different loads and carrying systems on selected biomechanical parameters describing walking gait. Ergonomics 1985, 28, 1347–1362. [Google Scholar] [CrossRef]
- Harman, E.; Han, K.H.; Frykman, P.; Pandorf, C. The Effects of Backpack Weight on the Biomechanics of Load Carriage; US Army Research Institute of Environmental Medicine: Natick, MA, USA, 2000. [Google Scholar]
- Polcyn, A.F.; Bensel, C.K.; Harman, E.A.; Obusek, J.P.; Pandorf, C.; Frykman, P. Effects of Weight Carried by Soldiers: Combined Analysis of Four Studies on Maximal Performance, Physiology, and Biomechanics; US Army Research Institute of Environmental Medicine: Natick, MA, USA, 2002; pp. 1–64. [Google Scholar]
- Tilbury-Davis, D.C.; Hooper, R.H. The kinetic and kinematic effects of increasing load carriage upon the lower limb. Hum. Mov. Sci. 1999, 18, 693–700. [Google Scholar] [CrossRef]
- Wang, H.; Frame, J.; Ozimek, E.; Leib, D.; Dugan, E.L. Influence of fatigue and load carriage on mechanical loading during walking. Mil. Med. 2012, 177, 152–156. [Google Scholar] [CrossRef]
- Wang, H.; Frame, J.; Ozimek, E.; Leib, D.; Dugan, E.L. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics. Res. Q. Exerc. Sport 2013, 84, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Verbitsky, O.; Mizrahi, J.; Voloshin, A.; Treiger, J.; Isakov, E. Shock transmission and fatigue in human running. J. Appl. Biomech. 1998, 14, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Voloshin, A.S.; Mizrahi, J.; Verbitsky, O.; Isakov, E. Dynamic loading on the human musculoskeletal system—Effect of fatigue. Clin. Biomech. 1998, 13, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Derrick, T.R.; Dereu, D.; McLean, S.P. Impacts and kinematic adjustments during an exhaustive run. Med. Sci. Sports Exerc. 2002, 34, 998–1002. [Google Scholar] [CrossRef]
- Mizrahi, J.; Verbitsky, O.; Isakov, E.; Daily, D. Effect of fatigue on leg kinematics and impact acceleration in long distance running. Hum. Mov. Sci. 2000, 19, 139–151. [Google Scholar] [CrossRef]
- Christina, K.A.; White, S.C.; Gilchrist, L.A. Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum. Mov. Sci. 2001, 20, 257–276. [Google Scholar] [CrossRef]
- James, C.R.; Dufek, J.S.; Bates, B.T. 565 Fatigue Accommodation During Landing. Med. Sci. Sports Exerc. 1994, 26, S100. [Google Scholar] [CrossRef]
- Puthoff, M.L.; Darter, B.J.; Nielsen, D.H.; Yack, H.J. The effect of weighted vest walking on metabolic responses and ground reaction forces. Med. Sci. Sports Exerc. 2006, 38, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, C.J.; Cunnington, J.; Rattley, K.; Wrench, E.; Dyche, C.; Bampouras, T.M. Weighted vests in CrossFit increase physiological stress during walking and running without changes in spatiotemporal gait parameters. Ergonomics 2022, 65, 147–158. [Google Scholar] [CrossRef]
- Martínez-Noguera, F.J.; Alcaraz, P.E.; Carlos-Vivas, J.; Marín-Pagán, C. Chronic Supplementation of 2S-Hesperidin Improves Acid-Base Status and Decreases Lactate at FatMax, at Ventilatory Threshold 1 and 2 and after an Incremental Test in Amateur Cyclists. Biology 2022, 11, 736. [Google Scholar] [CrossRef]
- Cannon, D.T.; Howe, F.A.; Whipp, B.J.; Ward, S.A.; McIntyre, D.J.; Ladroue, C.; Griffiths, J.R.; Kemp, G.J.; Rossiter, H.B. Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise. J. Appl. Physiol. (1985) 2013, 115, 839–849. [Google Scholar] [CrossRef]
- Copp, S.W.; Hirai, D.M.; Musch, T.I.; Poole, D.C. Critical speed in the rat: Implications for hindlimb muscle blood flow distribution and fibre recruitment. J. Physiol. 2010, 588, 5077–5087. [Google Scholar] [CrossRef] [PubMed]
- Hostrup, M.; Cairns, S.P.; Bangsbo, J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr. Physiol. 2011, 11, 1895–1959. [Google Scholar]
- Hureau, T.J.; Broxterman, R.M.; Weavil, J.C.; Lewis, M.T.; Layec, G.; Amann, M. On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A 31P-MRS study. J. Physiol. 2022, 600, 3069–3081. [Google Scholar] [CrossRef]
- Moxnes, J.F.; Sandbakk, Ø. The kinetics of lactate production and removal during whole-body exercise. Theor. Biol. Med. Model. 2012, 9, 7. [Google Scholar] [CrossRef]
Age (years) | 28.0 (8.7) |
Body mass (kg) | 62.5 (3.8) |
Height (cm) | 173.3 (0.5) |
Distance/week (km) | 58.8 (2.5) |
Elevation gain/week (m) | 1662.5 (110.9) |
Fat mass (%) | 9.3 (0.7) |
0% | 5% | 10% | Time | Condition | C × T | ||
---|---|---|---|---|---|---|---|
Hematocrit (%) (HCT) | Pre | 50.4 (1.40) | 50.5 (1.83) | 50.2 (3.12) | p = 0.261 | p = 0.020 | p = 0.712 |
Post1 | 51.3 (3.12) | 50.2 (2.18) | 50.5 (2.46) | ||||
Post2 | 51.0 (2.30) | 50.3 (1.92) | 51.2 (2.80) | ||||
ηp2 | 0.106 | 0.279 | 0.051 | ||||
Hemoglobin (g/dL) (Hb) | Pre | 16.7 (0.74) | 16.5 (0.58) | 16.4 (1.03) | p = 0.261 | p = 0.020 | p = 0.825 |
Post1 | 16.8 (0.94) | 16.4 (0.71) | 16.5 (0.80) | ||||
Post2 | 16.9 (0.99) | 16.4 (0.64) | 16.7 (0.92) | ||||
ηp2 | 0.106 | 0.279 | 0.030 | ||||
Oxyhemoglobin (%) (O2Hb) | Pre | 91.8 (2.67) | 91.6 (3.01) | 92.1 (1.56) | p ≤ 0.001 | p = 0.596 | p = 0.814 |
Post1 | 94.3 (1.09) | 94.1 (1.05) | 94.0 (1.30) | ||||
Post2 | 92.5 (1.25) | 92.7 (1.47) | 93.1 (1.58) | ||||
ηp2 | 0.507 | 0.042 | 0.032 | ||||
Carboxy-hemoglobin (%) (COHb) | Pre | 0.577 (0.28) | 0.593 (0.27) | 0.569 (0.28) | p ≤ 0.001 | p = 0.315 | p = 0.505 |
Post1 | 0.377 (0.25) | 0.400 (0.16) | 0.454 (0.25) | ||||
Post2 | 0.362 (0.17) | 0.393 (0.16) | 0.392 (0.17) | ||||
ηp2 | 0.519 | 0.092 | 0.066 | ||||
Deoxyhemoglobin (%) (RHb) | Pre | 6.81 (2.68) | 6.97 (2.96) | 6.42 (1.53) | p ≤ 0.001 | p = 0.496 | p = 0.826 |
Post1 | 4.53 (1.07) | 4.67 (0.99) | 4.78 (1.25) | ||||
Post2 | 6.26 (1.23) | 6.00 (1.39) | 5.62 (1.54) | ||||
ηp2 | 0.463 | 0.057 | 0.030 | ||||
Methemoglobin (%) (MetHb) | Pre | 0.792 (0.80) | 0.800 (0.23) | 0.869 (0.31) | p = 0.003 | p = 0.487 | p = 0.064 |
Post1 | 0.823 (0.25) | 0.857 (0.29) | 0.823 (0.31) | ||||
Post2 | 0.854 (0.22) | 0.893 (0.25) | 0.900 (0.33) | ||||
ηp2 | 0.378 | 0.058 | 0.166 | ||||
Oxygen saturation (%) (sO2) | Pre | 93.1 (2.70) | 92.9 (3.02) | 93.5 (1.57) | p ≤ 0.001 | p = 0.655 | p = 0.825 |
Post1 | 95.4 (1.10) | 95.3 (1.02) | 95.1 (1.41) | ||||
Post2 | 93.6 (1.24) | 93.9 (1.41) | 94.2 (1.65) | ||||
ηp2 | 0.460 | 0.035 | 0.030 | ||||
Oxygen partial pressure (mmHg) (pO2) | Pre | 70.0 (6.57) | 68.8 (9.36) | 70.7 (5.73) | p ≤ 0.001 | p = 0.678 | p = 1.000 |
Post1 | 81.7 (5.82) | 82.2 (6.95) | 82.9 (7.35) | ||||
Post2 | 81.1 (6.74) | 81.1 (9.67) | 81.7 (5.52) | ||||
ηp2 | 0.840 | 0.032 | 0.001 | ||||
Carbon dioxide partial pressure (mmHg) (pCO2) | Pre | 43.0 (3.63) | 42.9 (4.51) | 43.0 (2.73) | p ≤ 0.001 | p = 0.964 | p = 0.704 |
Post1 | 40.1 (2.56) | 40.5 (3.27) | 40.8 (3.05) | ||||
Post2 | 39.8 (2.86) | 38.9 (4.68) | 39.5 (3.62) | ||||
ηp2 | 0.552 | 0.003 | 0.043 | ||||
Total blood oxygen concentration (mmol/L) (tO2) | Pre | 9.62 (0.57) | 9.46 (0.51) | 9.48 (0.64) | p = 0.007 | p = 0.007 | p = 0.752 |
Post1 | 9.92 (0.63) | 9.68 (0.50) | 9.72 (0.54) | ||||
Post2 | 9.83 (0.58) | 9.56 (0.39) | 9.76 (0.57) | ||||
ηp2 | 0.335 | 0.341 | 0.038 | ||||
Total blood carbon dioxide concentration (mmol/L) (tCO2) | Pre | 26.0 (5.62) | 27.9 (2.63) | 28.1 (1.77) | p ≤ 0.001 | p = 0.214 | p = 0.693 |
Post1 | 21.8 (4.22) | 22.9 (2.64) | 23.5 (1.49) | ||||
Post2 | 17.2 (2.84) | 18.0 (2.93) | 19.0 (1.91) | ||||
ηp2 | 0.977 | 0.143 | 0.053 | ||||
Oxygen partial pressure at 50% oxygen saturation (mmHg) (p50) | Pre | 27.2 (2.51) | 26.4 (2.49) | 27.1 (2.27) | p ≤ 0.001 | p = 0.773 | p = 0.136 |
Post1 | 27.6 (2.96) | 28.1 (2.56) | 28.7 (2.16) | ||||
Post2 | 31.7 (1.82) | 31.0 (3.40) | 30.3 (2.80) | ||||
ηp2 | 0.639 | 0.021 | 0.133 | ||||
Relative physiological Shunt (%) (Shunt) | Pre | 17.1 (5.80) | 17.6 (7.15) | 16.0 (3.92) | p ≤ 0.001 | p = 0.491 | p = 0.987 |
Post1 | 9.91 (3.07) | 9.66 (2.66) | 9.62 (4.26) | ||||
Post2 | 13.6 (4.32) | 13.0 (4.42) | 12.0 (3.66) | ||||
ηp2 | 0.663 | 0.058 | 0.007 | ||||
Alveolar–arterial gradient (mmHg) (AaDpO2) | Pre | 30.9 (4.98) | 32.3 (8.08) | 30.0 (4.80) | p ≤ 0.001 | p = 0.531 | p = 0.980 |
Post1 | 22.6 (6.01) | 21.5 (5.39) | 20.3 (6.55) | ||||
Post2 | 23.5 (5.90) | 24.3 (6.65) | 23.0 (5.35) | ||||
ηp2 | 0.705 | 0.051 | 0.009 | ||||
Trial duration (seconds) | 2117 *† (134) | 2065 ‡ (145) | 1989 (157) | p ≤ 0.001 | |||
ηp2 | 0.641 |
0% | 5% | 10% | Time | Condition | C × T | ||
---|---|---|---|---|---|---|---|
pH | Pre | 7.40 (0.03) | 7.40 (0.03) | 7.40 (0.02) | p ≤ 0.001 | p = 0.030 | p = 0.035 |
Post1 | 7.34 (0.04) | 7.33 (0.04) | 7.35 (0.03) | ||||
Post2 | 7.23 (0.04) * | 7.24 (0.05) # | 7.26 (0.05) | ||||
ηp2 | 0.897 | 0.253 | 0.191 | ||||
Lactate (mmol/L) (Lac) | Pre | 2.02 (0.55) | 2.20 (0.62) | 2.07 (0.57) | p ≤ 0.001 | p = 0.405 | p = 0.775 |
Post1 | 5.76 (2.06) | 5.81 (1.87) | 5.42 (1.34) | ||||
Post2 | 11.8 (2.08) | 11.6 (2.16) | 11.1 (1.81) | ||||
ηp2 | 0.960 | 0.073 | 0.036 | ||||
Standard bicarbonate (mmol/L) (SBC) | Pre | 25.3 (0.99) | 25.5 (1.90) | 25.7 (1.32) | p ≤ 0.001 | p = 0.251 | p = 0.379 |
Post1 | 21.3 (1.96) | 21.1 (2.10) | 21.7 (1.22) | ||||
Post2 | 16.5 (1.35) | 16.7 (2.13) | 17.6 (1.67) | ||||
ηp2 | 0.970 | 0.109 | 0.082 | ||||
Bicarbonate anion (mmol/L) (HCO3−) | Pre | 26.4 (1.35) | 26.6 (2.51) | 26.7 (1.71) | p ≤ 0.001 | p = 0.497 | p = 0.649 |
Post1 | 21.7 (2.05) | 21.6 (2.56) | 22.3 (1.45) | ||||
Post2 | 16.6 (1.53) | 16.8 (2.82) | 17.8 (1.95) | ||||
ηp2 | 0.978 | 0.062 | 0.054 | ||||
Actual base excess (mmol/L) (ABE) | Pre | 1.11 (1.16) | 1.44 (2.14) | 1.54 (1.52) | p ≤ 0.001 | p = 0.205 | p = 0.249 |
Post1 | −3.77 (2.50) | −3.98 (2.66) | −3.23 (1.52) | ||||
Post2 | −10.3 (2.02) | −10.4 (3.17) | −8.73 (2.37) | ||||
ηp2 | 0.962 | 0.124 | 0.104 | ||||
Standard base excess (mmol/L) (SBE) | Pre | 1.48 (1.37) | 1.84 (2.61) | 1.98 (1.80) | p ≤ 0.001 | p = 0.246 | p = 0.385 |
Post1 | −4.04 (2.64) | −4.22 (3.01) | −3.38 (1.67) | ||||
Post2 | −10.9 (2.10) | −10.6 (3.48) | −9.26 (2.44) | ||||
ηp2 | 0.970 | 0.110 | 0.081 | ||||
Glucose (mg/dL) (Glu) | Pre | 99.8 (15.2) | 103 (29.7) | 101 (12.1) | p ≤ 0.001 | p = 0.166 | p = 0.258 |
Post1 | 116 (13.0) | 110 (17.5) | 104 (16.0) | ||||
Post2 | 128.0 (16.1) | 121.0 (17.1) | 115 (18.2) | ||||
ηp2 | 0.462 | 0.139 | 0.103 |
0% | 5% | 10% | Time | Condition | C × T | ||
---|---|---|---|---|---|---|---|
K+ (mmol/L) | Pre | 4.76 (0.65) | 4.95 (0.60) | 5.04 (0.77) | p = 0.021 | p = 0.641 | p = 0.625 |
Post1 | 5.19 (0.66) | 4.93 (0.38) | 5.18 (0.55) | ||||
Post2 | 5.34 (0.54) | 5.21 (0.67) | 5.33 (0.48) | ||||
ηp2 | 0.275 | 0.036 | 0.052 | ||||
Na+ (mmol/L) | Pre | 143 (1.19) | 144 (2.27) | 143 (1.30) | p ≤ 0.001 | p = 0.280 | p = 0.359 |
143 (1.32) | 144 (1.04) | 144 (0.90) | |||||
Post | 146 (1.72) | 150 (1.9) | 146 (1.60) | ||||
ηp2 | 0.791 | 0.101 | 0.085 | ||||
Cl− (mmol/L) | Pre | 107 (1.33) | 108 (3.10) | 107 (2.43) | p ≤ 0.001 | p = 0.868 | p = 0.536 |
Post1 | 108 (1.45) | 108 (2.37) | 108 (2.70) | ||||
Post2 | 109 (1.45) | 109 (2.13) | 109 (2.16) | ||||
ηp2 | 0.719 | 0.012 | 0.062 | ||||
Ca+ (mmol/L) | Pre | 1.27 (0.04) | 1.28 (0.08) | 1.26 (0.05) | p = 0.015 | p = 0.779 | p = 0.556 |
Post1 | 1.24 (0.02) | 1.24 (0.03) | 1.24 (0.03) | ||||
Post2 | 1.27 (0.03) | 1.27 (0.02) | 1.27 (0.03) | ||||
ηp2 | 0.295 | 0.021 | 0.060 | ||||
Anion_GAP (mmol/L) | Pre | 9.38 (1.40) | 9.21 (1.61) | 9.01 (1.47) | p ≤ 0.001 | p = 0.448 | p = 0.274 |
Post1 | 13.2 (2.17) | 14.3 (1.83) | 13.7 (1.57) | ||||
Post2 | 19.6 (2.41) | 19.9 (2.44) | 18.9 (1.87) | ||||
ηp2 | 0.959 | 0.065 | 0.099 | ||||
mOsm (mmol/kg) | Pre | 292 (1.97) | 294 (3.94) | 292 (2.46) | p ≤ 0.001 | p = 0.566 | p = 0.290 |
Post1 | 293 (2.41) | 294 (2.59) | 294 (2.25) | ||||
Post2 | 299 (3.69) | 299 (3.17) | 298 (3.08) | ||||
ηp2 | 0.874 | 0.050 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Noguera, F.J.; Alcaraz, P.E.; Marín-Pagán, C. Effect of Weighted Vest at 0%, 5% and 10% of Body Mass on Gasometry Biomarkers and Performance during a Rectangular Test in Trained Trail Runners. Sports 2024, 12, 229. https://doi.org/10.3390/sports12090229
Martínez-Noguera FJ, Alcaraz PE, Marín-Pagán C. Effect of Weighted Vest at 0%, 5% and 10% of Body Mass on Gasometry Biomarkers and Performance during a Rectangular Test in Trained Trail Runners. Sports. 2024; 12(9):229. https://doi.org/10.3390/sports12090229
Chicago/Turabian StyleMartínez-Noguera, Francisco Javier, Pedro E. Alcaraz, and Cristian Marín-Pagán. 2024. "Effect of Weighted Vest at 0%, 5% and 10% of Body Mass on Gasometry Biomarkers and Performance during a Rectangular Test in Trained Trail Runners" Sports 12, no. 9: 229. https://doi.org/10.3390/sports12090229
APA StyleMartínez-Noguera, F. J., Alcaraz, P. E., & Marín-Pagán, C. (2024). Effect of Weighted Vest at 0%, 5% and 10% of Body Mass on Gasometry Biomarkers and Performance during a Rectangular Test in Trained Trail Runners. Sports, 12(9), 229. https://doi.org/10.3390/sports12090229