The Influence of Anthropometric Characteristics on Punch Impact
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Study Selection, Data Extraction, and Synthesis
2.4. Quality Assessment of Studies
3. Results
3.1. Description of the Included Studies
3.2. Characteristics of the Studies
3.3. Participant Characteristics
3.4. Impact Force
3.5. Impact Power
3.6. Results Synthesis
3.7. Methodological Quality of the Studies
4. Discussion
5. Limitations
6. Conclusions
7. Future Implications
8. Practical Application
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lenetsky, S.; Harris, N.; Brughelli, M. Assessment and contributors of punching forces in combat sports athletes: Implications for strength and conditioning. Strength Cond. J. 2013, 35, 1–7. [Google Scholar] [CrossRef]
- Slimani, M.; Chaabène, H.; Davis, P.; Franchini, E.; Cheour, F.; Chamari, K. Performance aspects and physiological responses in male amateur boxing competitions: A brief review. J. Strength Cond. Res. 2017, 31, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Hristovski, R.; Davids, K.; Araújo, D.; Button, C. How boxers decide to punch a target: Emergent behaviour in nonlinear dynamical movement systems. J. Sports Sci. Med. 2006, 5, 60. [Google Scholar]
- Lenetsky, S.; Uthoff, A.; Coyne, J.; Cronin, J. A review of striking force in full-contact combat sport athletes: Methods of assessment. Strength Cond. J. 2022, 44, 71–83. [Google Scholar] [CrossRef]
- Davis, P.; Benson, P.R.; Waldock, R.; Connorton, A.J. Performance analysis of elite female amateur boxers and comparison with their male counterparts. Int. J. Sports Physiol. Perform. 2016, 11, 55–60. [Google Scholar] [CrossRef]
- Pic, M. Quality, height, age and home advantage in boxing. RICYDE Rev. Int. Cienc. Deporte 2017, 14, 174–187. [Google Scholar] [CrossRef]
- Chaabène, H.; Tabben, M.; Mkaouer, B.; Franchini, E.; Negra, Y.; Hammami, M.; Amara, S.; Chaabène, R.B.; Hachana, Y. Amateur boxing: Physical and physiological attributes. Sports Med. 2015, 45, 337–352. [Google Scholar] [CrossRef]
- Kim, K.-J.; Lee, S.-B.; Park, S. Effects of boxing-specific training on physical fitness and punch power in Korean national boxers. Exerc. Sci. 2018, 27, 296–302. [Google Scholar] [CrossRef]
- Smith, M.S. Physiological profile of senior and junior England international amateur boxers. J. Sports Sci. Med. 2006, 5, 74. [Google Scholar]
- Ebben, W.P.; Blackard, D.O. Developing a strength-power program for amateur boxing. Strength Cond. J. 1997, 19, 42–51. [Google Scholar] [CrossRef]
- Filimonov, V.I.; Koptsev, K.N.; Husyanov, Z.M.; Nazarov, S.S. Boxing: Means of increasing strength of the punch. Strength Cond. J. 1985, 7, 65–66. [Google Scholar] [CrossRef]
- Giovani, D.; Nikolaidis, P.T. Differences in force-velocity characteristics of upper and lower limbs of non-competitive male boxers. Int. J. Exerc. Sci. 2012, 5, 106. [Google Scholar] [CrossRef] [PubMed]
- Joch, W.; Fritche, P.; Krause, I. Biomechanical Analysis of Boxing; University Park Press: Baltimore, MD, USA, 1981. [Google Scholar]
- Loturco, I.; Nakamura, F.Y.; Artioli, G.G.; Kobal, R.; Kitamura, K.; Abad, C.C.C.; Cruz, I.F.; Romano, F.; Pereira, L.A.; Franchini, E. Strength and power qualities are highly associated with punching impact in elite amateur boxers. J. Strength Cond. Res. 2016, 30, 109–116. [Google Scholar] [CrossRef]
- McGill, S.M.; Chaimberg, J.D.; Frost, D.M.; Fenwick, C.M. Evidence of a double peak in muscle activation to enhance strike speed and force: An example with elite mixed martial arts fighters. J. Strength Cond. Res. 2010, 24, 348–357. [Google Scholar] [CrossRef]
- Ruddock, A.D.; Wilson, D.C.; Thompson, S.W.; Hembrough, D.; Winter, E.M. Strength and conditioning for professional boxing: Recommendations for physical preparation. Strength Cond. J. 2016, 38, 81–90. [Google Scholar] [CrossRef]
- Podhurskyi, S.E. Performance of striking techniques among qualified Muay Thai athletes of different weight classes. Int. J. Perform. Anal. Sport. 2020, 20, 294–304. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Pandey, A.S.; Badhyal, S. Design and development of a device for performance analysis and injury prevention in boxing. J. Postgrad. Med. Educ. Res. 2021, 54, 231–235. [Google Scholar] [CrossRef]
- Bešlija, T.; Čular, D.; Kezić, A.; Tomljanović, M.; Ardigò, L.P.; Dhabhi, W.; Padulo, J. Height-based model for the categorization of athletes in combat sports. Eur. J. Sport. Sci. 2021, 21, 471–480. [Google Scholar] [CrossRef]
- Dubnov-Raz, G.; Mashiach-Arazi, Y.; Nouriel, A.; Raz, R.; Constantini, N.W. Can height categories replace weight categories in striking martial arts competitions? A pilot study. J. Hum. Kinet. 2015, 47, 91–98. [Google Scholar] [CrossRef]
- Atha, J.; Yeadon, M.R.; Sandover, J.; Parsons, K.C. The damaging punch. Br. Med. J. (Clin. Res. Ed.) 1985, 291, 1756–1757. [Google Scholar] [CrossRef]
- Beattie, K.; Ruddock, A.D. The role of strength on punch impact force in boxing. J. Strength Cond. Res. 2022, 36, 2957–2969. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Doyle, G.; Hastings, K.; Thornton-White, C.; Galbraith, A. Profiling the physiological parameters of boxers in the parachute regiment. Int. J. Strength Cond. 2022, 2, 1–12. [Google Scholar] [CrossRef]
- Girodet, P.; Vaslin, P.; Dabonneville, M.; Lacouture, P. Two-dimensional kinematic and dynamic analysis of a karate straight punch. Comput. Methods Biomech. Biomed. Eng. 2005, 8 (Suppl. S1), 117–118. [Google Scholar] [CrossRef]
- Pierce, J.D.; Reinbold, K.A.; Lyngard, B.C.; Goldman, R.J.; Pastore, C.M. Direct measurement of punch force during six professional boxing matches. J. Quant. Anal. Sports 2006, 2. [Google Scholar] [CrossRef]
- Walilko, T.J.; Viano, D.C.; Bir, C.A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 2005, 39, 710–719. [Google Scholar] [CrossRef]
- Del Vecchio, L.; Whitting, J.; Hollier, J.; Keene, A.; Climstein, M. Reliability and practical use of a commercial device for measuring punch and kick impact kinetics. Sports 2022, 10, 206. [Google Scholar] [CrossRef]
- Powers, S.K.; Howley, E.T. Exercise physiology: Theory and application to fitness and performances. Med. Sci. Sports Exerc. 1995, 27, 466. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Thomas, B.H.; Ciliska, D.; Dobbins, M.; Micucci, S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews Evid. Based Nurs. 2004, 1, 176–184. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Teixeira, P.J.; Marques, M.; Carraça, E.V.; Rutter, H.; Oppert, J.M.; De Bourdeaudhuij, I.; Lakerveld, J.; Brug, J. A systematic review of self-regulation mediators of success in obesity interventions: The SPOTLIGHT project. Eur. Health Psychol. 2015, 17. [Google Scholar]
- Del Vecchio, L.; Borges, N.; MacGregor, C.; Meerkin, J.D.; Climstein, M. Musculoskeletal profile of amateur combat athletes: Body composition, muscular strength and striking power. Mov. Sport Sci. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Adamec, J.; Hofer, P.; Pittner, S.; Monticelli, F.; Graw, M.; Schöpfer, J. Biomechanical assessment of various punching techniques. Int. J. Legal Med. 2021, 135, 853–859. [Google Scholar] [CrossRef]
- Buśko, K.; Staniak, Z.; Szark-Eckardt, M.; Nikolaidis, P.T.; Mazur-Różycka, J.; Łach, P.; Ichalski, R.M.; Gajewski, J.; Górski, M.I. Measuring the force of punches and kicks among combat sport athletes using a modified punching bag with an embedded accelerometer. Acta Bioeng. Biomech. 2016, 18, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Chadli, S.; Ababou, N.; Ababou, A. A new instrument for punch analysis in boxing. Procedia Eng. 2014, 72, 411–416. [Google Scholar] [CrossRef]
- Dunn, E.C.; Humberstone, C.E.; Iredale, K.F.; Blazevich, A.J. A damaging punch: Assessment and application of a method to quantify punch performance. Transl. Sports Med. 2019, 2, 146–152. [Google Scholar] [CrossRef]
- Dunn, E.C.; Humberstone, C.E.; Franchini, E.; Iredale, K.F.; Blazevich, A.J. Relationships between punch impact force and upper- and lower-body muscular strength and power in highly trained amateur boxers. J. Strength Cond. Res. 2022, 36, 1019–1025. [Google Scholar] [CrossRef]
- Dyson, R.; Smith, M.; Fenn, L.; Martin, C. Differences in lead and rear hand punching forces, delivered at maximal speed relative to maximal force, by amateur boxers. In Proceedings of the 23 International Symposium on Biomechanics in Sports (2005), Beijing, China, 22–27 August 2005. [Google Scholar]
- Finlay, M.J. World Heavyweight Championship boxing: The past 30+ years of the male division. PLoS ONE 2022, 17, e0263038. [Google Scholar] [CrossRef]
- Lee, B.; McGill, S. The effect of core training on distal limb performance during ballistic strike manoeuvres. J. Sports Sci. 2017, 35, 1768–1780. [Google Scholar] [CrossRef]
- Neto, O.P.; Pacheco, M.T.T.; Bolander, R.; Bir, C. Force, reaction time, and precision of Kung Fu strikes. Percept. Mot. Ski. 2009, 109, 295–303. [Google Scholar] [CrossRef]
- Smith, M.S.; Dyson, R.J.; Hale, T.; Janaway, L. Development of a boxing dynamometer and its punch force discrimination efficacy. J. Sports Sci. 2000, 18, 445–450. [Google Scholar] [CrossRef] [PubMed]
- de Souza, V.A.; Marques, A.M. Relationship between age and expertise with the maximum impact force of a reverse punch by Shotokan karate athletes. Arch. Budo 2017, 13, 243–254. [Google Scholar]
- de Souza, V.A.; Marques, A.M. Impact force of a reverse punch performed by karate athletes. In Proceedings of the 2nd International Budo Conference, Osaka, Japan, 6–8 September 2017. [Google Scholar]
- Brown, L.; Galbraith, A.; Doyle, G.; Hastings, K. Physiological profiles of elite parachute regiment infantry boxers. J. Aust. Strength Cond. 2020, 28. Available online: https://repository.uel.ac.uk/item/8qy55 (accessed on 5 January 2025).
- Brown, L.; Hastings, K.; Doyle, G.; Bruce-Low, S.; Galbraith, A. The effects of lower core resistance training on rear hand punching performance in professional boxers. J. Aust. Strength Cond. 2021, 29, 15–24. [Google Scholar]
- Brown, L.; Hastings, K.; Ogilvie, D.; McAllister, B.; Velicko, N.; Amouri, A.; Lesurf, J. Identifying the significance of specific eccentric and concentric training modalities on punching impact power (IP) output in boxers and Thai boxers. J. Aust. Strength Cond. 2023, 31, 18–30. [Google Scholar]
- Del Vecchio, L.; Stanton, R.; Macgregor, C.; Humphries, B.; Borges, N. The effects of a six week Exogen training program on punching and kicking impact power in amateur male combat athletes: A pilot study. J. Aust. Strength Cond. 2018, 26, 17–27. [Google Scholar]
- Del Vecchio, L.; Stanton, R.; Macgregor, C.; Humphries, B.; Borges, N. Effects of a six-week strength and power training program on punching and kicking impact power in amateur male combat athletes: A pilot study. J. Athl. Enhanc. 2019, 8, 1–8. [Google Scholar] [CrossRef]
Reference | Study Design | Participants | Type of Sport | Anthropometric Characteristics | Instruments | Main Results |
---|---|---|---|---|---|---|
Adamec et al., 2021 [32] | Cross-sectional | N = 50 (men = 29; women = 21); Age: 34 years; BH: 174 cm; BM: 76 kg. | Karate. | BH, BM. | Force platform with cushioned target (DIRA). | Fmax—Straight punch (4639 N). |
Buśko et al., 2016 [33] | Cross-sectional | N = 13 men; Age: 17.5 years; BH: 175.5 cm; BM: 69 kg. | Boxing. | BH, BM. | Boxing bag with load cell and an inserted gyroscope transducer (DIRA). | Fmean—Cross (1592.5 ± 507.1 N). |
Chadli et al., 2014 [34] | Cross-sectional | N = 11 (unknown gender); Age: 23.5 ± 0.5 years; BH: 179 ± 9 cm; BM: 77.39 ± 11 kg. | Boxing. | BH, BM. | Target with an accelerometer and load cell inserted (DIRA). | Fmean—Punch (989 ± 116.76 N). |
Dunn et al., 2019 [35] | Cross-sectional | N = 15 men; Age: 17.5 ± 0.5 years; BH: 177.5 ± 9 cm; BM: 73 ± 14 kg. | Boxing. | BH, BM. | Load cell inserted in the wall bag, with transducer and respective software (DIRA). | Fmean—Jabs (841 ± 180 N); Cross (1818 ± 332 N); Hooks (2622 ± 288 N). |
Dunn et al., 2022 [36] | Cross-sectional | N = 28 men; Age: 19 ± 2 years; BH: 177 ± 7.3 cm; BM: 70.5 ± 11 kg. | Boxing. | BH, BM. | Load cell inserted in the wall bag, with transducer and respective software (DIRA). | Fmean—Jab (823 ± 271 N); Cross (1830 ± 387 N); Lead-hand hook (2491 ± 492 N); Rear-hand hook (2742 ± 571 N). |
Dyson et al., 2005 [37] | Cross-sectional | N = 6 men; Age: 24.5 ± 3.3 years; BH: 182 ± 5 cm; BM: 73.3 ± 19 kg. | Boxing. | BH, BM. | Load cell inserted in the boxing bag, with transducer and respective software (DIRA). | Fmean—Cross (4236 ± 181 N); Jab (2722 ± 75 N). |
Finlay, 2022 [38] | Experimental | N = 10 men; Age: 19.7 ± 1.2 years; BH: 180.9 ± 7.0 cm; BM: 78.7 ± 9.6 kg. | Boxing. | BH, BM. | Force platform with cushioned target (DIRA). | Fmax—Rear-hand hook (2673 N); Lead-hand hook (2565 N); Cross (2538 N). |
Kim et al., 2018 [8] | Quasi-experimental | N = 15 men; Age: 23.4 years; BH: 176.5 cm; BM: 67.7 kg. | Boxing. | BH, BM. | Tri-axial accelerometers inserted in the dummy’s head (DIRA). | Fmax—Cross (2313 N). |
Lee and McGill, 2017 [39] | Quasi-experimental | N = 12 men; Age: 24.2 ± 2.9 years; BH: 180 ± 5 cm; BM: 76.8 ± 9.7 kg. | Muay Thai. | BH, BM. | Load cell inserted in the wall bag, with transducer and respective software (DIRA). | Fmean—Jab (3093.7 ± 69.4 N); Cross (5008.6 ± 76.3 N); Knee (9482 ± 152.8 N). |
Loturco et al., 2016 [14] | Cross-sectional | N = 15 (men = 9; women = 6); Age: 25.9 ± 4.7 years; BH: 172 ± 10 cm; BM: 64.56 ± 12.1 kg. | Boxing. | BH, BM. | Force platform with cushioned target (DIRA). | Fmean—Jab/men (1152.22 ± 246.87 N); Cross/men (1331.67 ± 234.49 N); Jab/women (902.50 ± 213.49 N); Cross/women (994.17 ± 221.14 N). |
Neto et al., 2009 [40] | Cross-sectional | N = 12 (men = 10; women = 2); Age: 23.4 years; BH: 174.7 ± 4 cm; BM: 70.9 ± 12 kg. | Kung Fu. | BH, BM. | Load cell inserted in the target, with transducer and respective software (DIRA). | Fmax—Punch (1226 N). |
Smith et al., 2000 [41] | Cross-sectional | N = 23 men; Age: 23.1 ± 1.2 years; BH: 178 ± 6 cm; BM: 69.9 ± 8.6 kg. | Boxing. | BH, BM. | Target with a load cell specific to boxing and force transducer (DIRA). | Fmean—Cross: elite (4800 ± 227 N), intermediate (3722 ± 133 N), beginner (2381 ± 116 N). |
Smith, 2006 [9] | Cross-sectional | N = 29 (unknown gender); Age: 21 ± 2 years; BH: 174 ± 8 cm; BM: 67 ± 10 kg. | Boxing. | BH, BM. | Target with a load cell specific to boxing and force transducer (DIRA). | Fmean—Jab to the face (1722 ± 700 N), to the body (1682 ± 636 N); Cross to the face (2643 ± 1273 N), to the body (2646 ± 1083 N); Lead-hand hook to the face (2412 ± 813 N), to the body (2414 ± 718 N); Rear-hand hook to the face (2588 ± 1040 N), to the body (2555 ± 926 N). |
V. A. de Souza and Marques, 2017 [42] | Cross-sectional | N = 8 men; Age: 20.25 ± 4.13 years; BH: 174 ± 4 cm; BM: 72.4 ± 9.6 kg. | Karate. | BH, BM. | Target on a board with a lateral load cell, transducer, and respective software (DIRA). | Fmax—Straight punch (1812.01 N). |
V. de Souza and Marques, 2017 [43] | Cross-sectional | N = 8 men; Age: 47.5 ± 10.13 years; BH: 176 ± 3 cm; BM: 86.8 ± 17 kg. | Karate. | BH, BM. | Target on a board with a lateral load cell, transducer, and respective software (DIRA). | Fmean—Straight punch (2260.79 ± 538.44 N). |
Walilko et al., 2005 [24] | Cross-sectional | N = 7 (unknown gender); BM: 48–109 kg. | Boxing. | BM. | Accelerometer inserted in the dummy’s head and the participants’ gloves (DIRA and AL). | Fmax—Straight punch (4741 N). BM categories: Flyweight (3914 N); Light welterweight (3621 N); Middleweight (3072 N); Super heavyweight (4741 N). |
Reference | Study Design | Participants | Type of Sport | Anthropometric Characteristics | Instruments | Main Results |
---|---|---|---|---|---|---|
Brown et al., 2020 [44] | Cross-sectional | N = 15 men; Age: 24.2 ± 2.9 years; BH: 176.7 ± 6.2 cm; BM: 79.3 ± 11.8 kg; BMI: 24.9 kg·m−2. | Boxing | BH, BM. | PowerKube (DIRA). | Pmean—Cross (15,227.4 ± 225 W). |
Brown et al., 2021 [45] | Experimental | N = 20 men; Age: 28 ± 6 years; BH: 178 ± 4 cm; BM: 76.5 ± 10 kg. | Boxing. | BH, BM. | PowerKube (DIRA). | Pmean—Cross (22,014 ± 1336 W). |
Brown et al., 2022 [21] | Cross-sectional | N = 22 men; Age: 28 ± 2 years; BH: 178 ± 8.1 cm; BM: 79 ± 7.1 kg; BMI: 24.9 ± 2.5 kg·m−2. | Boxing | BH, BM. | PowerKube (DIRA). | Pmean—Cross (15,227 ± 2250 W). |
Brown et al., 2023 [46] | Cross-sectional | N = 16 (men = 15; women = 1); Age: 24 ± 4 years; BH: 181.72 ± 8.28 cm; BM: 80.16 ± 11.32 kg. | Boxing; Muay Thai | BH, BM. | PowerKube (DIRA). | Pmean—Cross (19,640 ± 1410 W). |
Del Vecchio et al., 2018 [47] | Experimental | N = 17 men (10 EG; 6 CG); Age: 28 ± 2 (EG) e 29 ± 2 (CG) years; BH: 178 ± 8.1 (EG) e 177.7 ± 5.7 (CG) cm; BM: 79 ± 7.1 (EG) e 79.8 ± 11.9 (CG) kg. | Combat sports (not specified) | BH, BM. | StrikeMate (DIRA). | Pmean—Jab (6781.6 ± 2178.9 W); Cross (15,335.9 ± 4432.8 W); Front kick (8357.5 ± 2895.9 W); Roundhouse kick (40,129.2 ± 10,169.8 W). |
Del Vecchio et al., 2019 [48] | Experimental | N = 16 men (10 EG; 6 CG); Age: 25.2 ± 1.8 (EG) e 29 ± 2 (CG) years; BH: 178.1 ± 7.1(EG) e 177.7 ± 5.7 (CG) cm; BM: 76 ± 7.2 (EG) e 79.8 ± 11.9 (CG) kg. | Combat sports (not specified) | BH, BM. | StrikeMate (DIRA). | Pmean—Jab (7478.82 ± 2994.36 W); Cross (15,183.27 ± 4368.90 W); Front kick (7438.64 ± 1910.56 W); Roundhouse kick (45,278.30 ± 11,323.13 W). |
Del Vecchio et al., 2021 [49] | Cross-sectional | N = 13 men; Age: 28.8 ± 4.57 years; BH: 176.9 ± 4.14 cm; BM: 80.9 ± 12.24 kg; BMI: 25.9 ± 3.8 kg·m−2. | Combat sports (not specified) | BH, BM. | StrikeMate (DIRA). | Pmean—Jab (8081 ± 3742 W); Cross (15,431 ± 4294 W); Front kick (8563 ± 3095 W); Roundhouse kick (46,377 ± 12,209 W). |
Reference | Study Design | Blinding | Representativity (Selection Bias) | Sample Representativity (Dropouts) | Confounding Factors | Data Selection | Data Analysis | Representation of Results | Overall Classification |
---|---|---|---|---|---|---|---|---|---|
Adamec et al., 2021 [32] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Buśko et al., 2016 [33] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Chadli et al., 2014 [34] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Dunn et al., 2019 [35] | 2 | 3 | 2 | 4 | 2 | 1 | 1 | 1 | Moderate |
Dunn et al., 2022 [36] | 2 | 3 | 2 | 4 | 2 | 1 | 1 | 1 | Moderate |
Dyson et al., 2005 [37] | 2 | 3 | 2 | 4 | 2 | 1 | 1 | 1 | Moderate |
Finlay, 2022 [38] | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | Strong |
Kim et al., 2018 [8] | 1 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | Moderate |
Lee and McGill, 2017 [39] | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | Strong |
Loturco et al., 2016 [14] | 2 | 3 | 2 | 4 | 2 | 1 | 1 | 1 | Moderate |
Neto et al., 2009 [40] | 2 | 3 | 2 | 4 | 2 | 1 | 1 | 1 | Moderate |
Smith et al., 2000 [41] | 2 | 3 | 1 | 4 | 2 | 1 | 1 | 1 | Moderate |
Smith, 2006 [9] | 2 | 3 | 1 | 4 | 3 | 1 | 1 | 1 | Moderate |
V. A. de Souza and Marques, 2017 [42] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
V. de Souza and Marques, 2017 [43] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Walilko et al., 2005 [24] | 2 | 3 | 3 | 4 | 3 | 1 | 1 | 1 | Moderate |
Reference | Study Design | Blinding | Representativity (Selection Bias) | Sample Representativity (Dropouts) | Confounding Factors | Data Selection | Data Analysis | Representation of Results | Overall Classification |
---|---|---|---|---|---|---|---|---|---|
Brown et al., 2020 [44] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Brown et al., 2021 [45] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Brown et al., 2022 [21] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Brown et al., 2023 [46] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Del Vecchio et al., 2018 [47] | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | Moderate |
Del Vecchio et al., 2019 [48] | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | Moderate |
Del Vecchio et al., 2021 [49] | 2 | 3 | 3 | 4 | 2 | 1 | 1 | 1 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, M.; Crisóstomo, J.; Silva, G.; Monteiro, L. The Influence of Anthropometric Characteristics on Punch Impact. Sports 2025, 13, 12. https://doi.org/10.3390/sports13010012
Pinto M, Crisóstomo J, Silva G, Monteiro L. The Influence of Anthropometric Characteristics on Punch Impact. Sports. 2025; 13(1):12. https://doi.org/10.3390/sports13010012
Chicago/Turabian StylePinto, Manuel, João Crisóstomo, Gil Silva, and Luís Monteiro. 2025. "The Influence of Anthropometric Characteristics on Punch Impact" Sports 13, no. 1: 12. https://doi.org/10.3390/sports13010012
APA StylePinto, M., Crisóstomo, J., Silva, G., & Monteiro, L. (2025). The Influence of Anthropometric Characteristics on Punch Impact. Sports, 13(1), 12. https://doi.org/10.3390/sports13010012