Reliability, Objectivity, Validity and Reference Levels of the Austrian Balance Check (ABC)—A Novel Balance Field Test for Children, Adolescents and Young Adults to Assess Static Balance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of School Campus and Study Participants
2.2. Procedure
2.2.1. Anthropometry
2.2.2. Austrian Balance Check (ABC)
2.2.3. Gold Standard Comparison—Single Leg Stand Test Using the KNIVENT Force Plate (FP SLS)
2.2.4. Competitiveness—Backward Balance Test According to Bös (BB GMT)
2.3. Grouping, Standardization and Classification
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Day, B.L.; Fitzpatrick, R.C. The vestibular system. Curr. Biol. 2005, 15, R583–R586. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.C.; Day, B.L. Probing the human vestibular system with galvanic stimulation. J. Appl. Physiol. 2004, 96, 2301–2316. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.J. Bausteine der Kindlichen Entwicklung: Sensorische Integration Verstehen und Anwenden—Das Original in Moderner Neuauflage, 6th korrigierte Auflage ed; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783662528907. [Google Scholar]
- Abu–Shihab, E.N.; Abu Mohammad, M.F.; Khazaleh, W.M.; Bataineh, A.S. Academic Achievement and Anthropometric Measurements and their Correlation with the Ability of Motor Balance and Concentration for 12 Year-Old Children. J. Educ. Psychol. Sci. 2017, 18, 193–222. [Google Scholar] [CrossRef]
- Duff, D.M.; Hendricks, A.E.; Fitton, L.; Adlof, S.M. Reading and Math Achievement in Children with Dyslexia, Developmental Language Disorder, or Typical Development: Achievement Gaps Persist From Second Through Fourth Grades. J. Learn. Disabil. 2022, 56, 371–391. [Google Scholar] [CrossRef]
- Nicolson, R.I.; Fawcett, A.J.; Dean, P. Developmental dyslexia: The cerebellar deficit hypothesis. Trends Neurosci. 2001, 24, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Acar, H.; Eler, N. The Effect of Balance Exercises on Speed and Agility in Physical Education Lessons. Univers. J. Educ. Res. 2019, 7, 74–79. [Google Scholar] [CrossRef]
- Gebel, A.; Prieske, O.; Behm, D.G.; Granacher, U. Effects of Balance Training on Physical Fitness in Youth and Young Athletes: A Narrative Review. Strength Cond. J. 2020, 42, 35–44. [Google Scholar] [CrossRef]
- Hrysomallis, C. Balance ability and athletic performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef]
- Nakano, M.M.; Otonari, T.S.; Takara, K.S.; Carmo, C.M.; Tanaka, C. Physical performance, balance, mobility, and muscle strength decline at different rates in elderly people. J. Phys. Ther. Sci. 2014, 26, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Conner, B.C.; Petersen, D.A.; Pigman, J.; Tracy, J.B.; Johnson, C.L.; Manal, K.; Miller, F.; Modlesky, C.M.; Crenshaw, J.R. The cross-sectional relationships between age, standing static balance, and standing dynamic balance reactions in typically developing children. Gait Posture 2019, 73, 20–25. [Google Scholar] [CrossRef]
- Emery, C.A.; Pasanen, K. Current trends in sport injury prevention. Best Pract. Res. Clin. Rheumatol. 2019, 33, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Jemni, M.; Thomas, E.; Patti, A.; Paoli, A.; Ramos Roque, J.; Palma, A.; Mammina, C.; Tabacchi, G. A systematic review to determine reliability and usefulness of the field-based test batteries for the assessment of physical fitness in adolescents-The ASSO Project. Int. J. Occup. Med. Environ. Health 2015, 28, 445–478. [Google Scholar] [CrossRef] [PubMed]
- Cvejić, D.; Pejović, T.; Ostojić, S. Assessment of physical fitness in children and adolescents. Facta Univ. Ser. Phys. Educ. Sport 2013, 11, 135–145. [Google Scholar]
- Fühner, T.; Kliegl, R.; Arntz, F.; Kriemler, S.; Granacher, U. An Update on Secular Trends in Physical Fitness of Children and Adolescents from 1972 to 2015: A Systematic Review. Sports Med. 2021, 51, 303–320. [Google Scholar] [CrossRef]
- Freedson, P.S.; Cureton, K.J.; Heath, G.W. Status of Field-Based Fitness Testing in Children and Youth. Prev. Med. 2000, 31, S77–S85. [Google Scholar] [CrossRef]
- Bös, K. Handbuch Motorische Tests: Sportmotorische Tests, Motorische Funktionstests, Fragebögen zur Körperlich-Sportlichen Aktivität und Sportpsychologische Diagnoseverfahren; 3., Überarbeitete und Erweiterte Auflage; Hogrefe: Göttingen, Germany, 2017; ISBN 9783801723699. [Google Scholar]
- Jarnig, G.; Kerbl, R.; vanPoppel, M. Reliability and Competitiveness of a Novel Balance Field Test: A Cross-Sectional Pilot Study. medRxiv 2024. [Google Scholar] [CrossRef]
- Tabacchi, G.; Lopez Sanchez, G.F.; Nese Sahin, F.; Kizilyalli, M.; Genchi, R.; Basile, M.; Kirkar, M.; Silva, C.; Loureiro, N.; Teixeira, E.; et al. Field-Based Tests for the Assessment of Physical Fitness in Children and Adolescents Practicing Sport: A Systematic Review within the ESA Program. Sustainability 2019, 11, 7187. [Google Scholar] [CrossRef]
- Ricotti, L. Static and dynamic balance in young athletes. J. Hum. Sport Exerc. 2011, 6, 616–628. [Google Scholar] [CrossRef]
- Panjan, A.; Sarabon, N. Review of Methods for the Evaluation of Human Body Balance. Sport Sci. Rev. 2010, 19, 131–163. [Google Scholar] [CrossRef]
- Gilberto, C.; Di Alain, D.; Julia, M.; Adriana, G.L.D.S.; Vania Cristina, D.R.M.; José Elias, T.; Guillaume, T. How to evaluate the postural balance in a more efficient and less expensive way? Procedia CIRP 2018, 70, 272–277. [Google Scholar] [CrossRef]
- Condon, C.; Cremin, K. Static balance norms in children. Physiother. Res. Int. 2014, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Bryant, A.L.; Pua, Y.; McCrory, P.; Bennell, K.; Hunt, M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010, 31, 307–310. [Google Scholar] [CrossRef]
- Duarte, M.; Freitas, S.M. Revision of posturography based on force plate for balance evaluation. Braz. J. Phys. Ther. 2010, 14, 183–192. [Google Scholar] [CrossRef]
- Heidt, C.; Vrankovic, M.; Mendoza, A.; Hollander, K.; Dreher, T.; Rueger, M. Simplified digital balance assessment in typically developing school children. Gait Posture 2021, 84, 389–394. [Google Scholar] [CrossRef]
- Niklas, F.; Cohrssen, C.; Vidmar, M.; Segerer, R.; Schmiedeler, S.; Galpin, R.; Klemm, V.V.; Kandler, S.; Tayler, C. Early childhood professionals’ perceptions of children’s school readiness characteristics in six countries. Int. J. Educ. Res. 2018, 90, 144–159. [Google Scholar] [CrossRef]
- Meras Serrano, H.; Mottet, D.; Caillaud, K. Validity and Reliability of Kinvent Plates for Assessing Single Leg Static and Dynamic Balance in the Field. Sensors 2023, 23, 2354. [Google Scholar] [CrossRef] [PubMed]
- Bös, K. Deutscher Motorik-Test 6-18: (DMT 6-18): Manual und Internetbasierte Auswertungssoftware; 2., Auflage; Feldhaus, Edition; Czwalina: Hamburg, Germany, 2016; ISBN 9783880206434. [Google Scholar]
- Mayer, M.; Gleiss, A.; Häusler, G.; Borkenstein, M.; Kapelari, K.; Köstl, G.; Lassi, M.; Schemper, M.; Schmitt, K.; Blümel, P. Weight and body mass index (BMI): Current data for Austrian boys and girls aged 4 to under 19 years. Ann. Hum. Biol. 2015, 42, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Mascha, E.J.; Vetter, T.R. Statistics From A (Agreement) to Z (z Score): A Guide to Interpreting Common Measures of Association, Agreement, Diagnostic Accuracy, Effect Size, Heterogeneity, and Reliability in Medical Research. Anesth. Analg. 2021, 133, 1633–1641. [Google Scholar] [CrossRef]
- Dimitrov, D.M. Statistical Methods for Validation of Assessment Scale Data in Counseling and Related Fields; 1., Auflage; John Wiley & Sons: New York, NY, USA, 2014; ISBN 9781119019282. [Google Scholar]
- Donath, L.; Roth, R.; Zahner, L.; Faude, O. Testing single and double limb standing balance performance: Comparison of COP path length evaluation between two devices. Gait Posture 2012, 36, 439–443. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 0805802835. [Google Scholar]
- Franjoine, M.R.; Darr, N.; Held, S.L.; Kott, K.; Young, B.L. The performance of children developing typically on the pediatric balance scale. Pediatr. Phys. Ther. 2010, 22, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Rival, C.; Ceyte, H.; Olivier, I. Developmental changes of static standing balance in children. Neurosci. Lett. 2005, 376, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.; Nitz, J.; Choy, N.L.; Illing, S. Age-related changes in musculoskeletal function, balance and mobility measures in men aged 30–80 years. Aging Male 2010, 13, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Lahtinen, U.; Rintala, P.; Malin, A. Physical performance of individuals with intellectual disability: A 30 year follow up. Adapt. Phys. Act. Q. 2007, 24, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Burke, E.J. Validity of Selected Laboratory and Field Tests of Physical Working Capacity. Res. Q. Am. Alliance Health Phys. Educ. Recreat. 1976, 47, 95–104. [Google Scholar] [CrossRef]
- Aandstad, A. Association Between Performance in Muscle Fitness Field Tests and Skeletal Muscle Mass in Soldiers. Mil. Med. 2020, 185, e839–e846. [Google Scholar] [CrossRef]
- Bell, M.; Fotheringham, I.; Punekar, Y.S.; Riley, J.H.; Cockle, S.; Singh, S.J. Systematic Review of the Association Between Laboratory- and Field-Based Exercise Tests and Lung Function in Patients with Chronic Obstructive Pulmonary Disease. Chronic Obstr. Pulm. Dis. 2015, 2, 321–342. [Google Scholar] [CrossRef] [PubMed]
Variable | Gender | Age Group | Total Points Achieved (0 to 20) in the Austrian Balance Check | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |||||
Allocation of the total points to the performance categories | Male | ≤7 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | ||
8 to 9 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | ||||
10 to 11 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 9 | ||||
12 to 13 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 9 | ||||
14 to 15 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 9 | 9 | 9 | ||||
16 to 17 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 7 | 7 | 8 | 9 | 9 | 9 | ||||
18 to 19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 6 | 6 | 7 | 8 | 8 | 9 | 9 | ||||
Female | ≤7 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | |||
8 to 9 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | ||||
10 to 11 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | ||||
12 to 13 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 | 8 | 8 | 9 | 9 | 9 | ||||
14 to 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | 6 | 7 | 8 | 8 | 9 | 9 | 9 | ||||
16 to 17 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | ||||
18 to 19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 8 | 8 | 9 | ||||
Categories of classification | |||||||||||||||||||||||||
Low balance performance | Average balance performance | High balance performance | |||||||||||||||||||||||
1 | Poor balance | 4 | Below-average balance | 7 | Good balance | ||||||||||||||||||||
2 | Very weak balance | 5 | Average balance | 8 | Very good balance | ||||||||||||||||||||
3 | Weak balance | 6 | Above-average balance | 9 | Excellent balance |
Test Quality Criteria | Group | Regular School Class | Elite Sports School Class | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | ICC (2.1) | 95% CI | Agreement | N | ICC (2.1) | 95% CI | Agreement | ||||
Lower | Upper | Lower | Upper | ||||||||
Test of Reliability | All | 342 | 0.919 | 0.900 | 0.934 | Excellent | 139 | 0.894 | 0.850 | 0.925 | Good to Excellent |
Boys | 161 | 0.920 | 0.892 | 0.941 | Good to Excellent | 104 | 0.891 | 0.836 | 0.927 | Good to Excellent | |
Girls | 181 | 0.913 | 0.885 | 0.935 | Good to Excellent | 35 | 0.905 | 0.821 | 0.951 | Good to Excellent | |
Test of Objectivity | All | 210 | 0.985 | 0.980 | 0.988 | Excellent | 73 | 0.975 | 0.961 | 0.985 | Excellent |
Boys | 110 | 0.979 | 0.970 | 0.986 | Excellent | 52 | 0.969 | 0.947 | 0.982 | Excellent | |
Girls | 100 | 0.992 | 0.988 | 0.994 | Excellent | 21 | 0.995 | 0.989 | 0.998 | Excellent |
Variable | Regular School Class | ||||||
---|---|---|---|---|---|---|---|
ABC rs | FP SLS. rs | ||||||
COP Su, mm2 | COP Mv. mm/s | COP Pl. mm | |||||
School-age children & adolescents up to 19 years | All | ABC rs | -- | ||||
FP SLS. rs | Surface. mm2 | −0.612 ** | -- | ||||
COP Mv. mm/s | −0.653 ** | 0.678 ** | -- | ||||
COP Pl. mm | −0.651 ** | 0.679 ** | 0.999 ** | -- | |||
Boys | ABC rs | -- | |||||
FP SLS. rs | Surface. mm2 | −0.589 ** | -- | ||||
COP Mv. mm/s | −0.585 ** | 0.710 ** | -- | ||||
COP Pl. mm | −0.590 ** | 0.714 ** | 0.996 ** | -- | |||
Girls | ABC rs | -- | |||||
FP SLS. rs | Surface. mm2 | −0.570 ** | -- | ||||
COP Mv. mm/s | −0.620 ** | 0.594 ** | -- | ||||
COP Pl. mm | −0.615 ** | 0.593 ** | 0.999 ** | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarnig, G.; Kerbl, R.; van Poppel, M.N.M. Reliability, Objectivity, Validity and Reference Levels of the Austrian Balance Check (ABC)—A Novel Balance Field Test for Children, Adolescents and Young Adults to Assess Static Balance. Sports 2025, 13, 5. https://doi.org/10.3390/sports13010005
Jarnig G, Kerbl R, van Poppel MNM. Reliability, Objectivity, Validity and Reference Levels of the Austrian Balance Check (ABC)—A Novel Balance Field Test for Children, Adolescents and Young Adults to Assess Static Balance. Sports. 2025; 13(1):5. https://doi.org/10.3390/sports13010005
Chicago/Turabian StyleJarnig, Gerald, Reinhold Kerbl, and Mireille N. M. van Poppel. 2025. "Reliability, Objectivity, Validity and Reference Levels of the Austrian Balance Check (ABC)—A Novel Balance Field Test for Children, Adolescents and Young Adults to Assess Static Balance" Sports 13, no. 1: 5. https://doi.org/10.3390/sports13010005
APA StyleJarnig, G., Kerbl, R., & van Poppel, M. N. M. (2025). Reliability, Objectivity, Validity and Reference Levels of the Austrian Balance Check (ABC)—A Novel Balance Field Test for Children, Adolescents and Young Adults to Assess Static Balance. Sports, 13(1), 5. https://doi.org/10.3390/sports13010005