Effects of Two Competitive Soccer Matches on Landing Biomechanics in Female Division I Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Procedure
2.3. Physical Performance Measurements
2.3.1. Global Positioning System (GPS) Movement Data
2.3.2. Countermovement Jump
2.3.3. Margaria–Kalamen Test
2.3.4. Maximum Voluntary Isometric Strength
2.4. Biomechanical Measurements
2.4.1. Procedures
2.4.2. Statistical Analysis
3. Results
3.1. Strength and Power
3.2. Kinematic and Kinetic Parameters
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roos, E.M. Joint injury causes knee osteoarthritis in young adults. Curr. Opin. Rheumatol. 2005, 17, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hootman, J.M. Anterior Cruciate Ligament Injury Prevention and Primary Prevention of Knee Osteoarthritis. J. Athl. Train. 2012, 5, 589–590. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.A.; Agel, J.; Dick, R. Anterior cruciate ligament injury patterns among collegiate men and women. J. Athl. Train. 1999, 34, 86–92. [Google Scholar] [PubMed]
- Gwinn, D.E.; Wilckens, J.H.; McDevitt, E.R.; Ross, G.; Kao, T.C. The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am. J. Sport Med. 2000, 28, 98–102. [Google Scholar] [CrossRef]
- Kiapour, A.M.; Quatman, C.E.; Goel, V.K.; Wordeman, S.C.; Hewett, T.E.; Demetropoulos, C.K. Timing sequence of multi-planar knee kinematics revealed by physiologic cadaveric simulation of landing: Implications for ACL injury mechanism. Clin. Biomech. 2014, 29, 75–82. [Google Scholar] [CrossRef]
- Chappell, J.; Herman, D.C.; Knight, B.S.; Kirkendall, D.T.; Garrett, W.E.; Yu, B. Effect of Fatigue on Knee Kinetics and Kinematics in Stop-Jump Tasks. Am. J. Sport Med. 2005, 33, 1022–1029. [Google Scholar] [CrossRef]
- Boden, B.P.; Dean, G.S.; Feagin, J.A., Jr.; Garrett, W.E., Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Silva, J.; Rumpf, M.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 539–583. [Google Scholar] [CrossRef]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. Recovery in soccer: Part I—Post-match fatigue and time course of recovery. Sports Med. 2012, 42, 997–1015. [Google Scholar]
- Barber-Westin, S.D.; Noyes, F.R. Effect of Fatigue Protocols on Lower Limb Neuromuscular Function and Implications for Anterior Cruciate Ligament Injury Prevention Training: A Systematic Review. Am. J. Sport Med. 2017, 45, 3388–3396. [Google Scholar] [CrossRef]
- Bourne, M.N.; Webster, K.E.; Hewett, T.E. Is Fatigue a Risk Factor for Anterior Cruciate Ligament Rupture? Sports Med. 2019, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Benjaminse, A.; Webster, K.; Kimp, A.; Meijer, M.; Gokeler, A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019, 49, 565–586. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Le Gall, F.; Dupont, G. Are Physical Performance and Injury Risk in a Professional Soccer Team in Match-Play Affected Over a Prolonged Period of Fixture Congestion? Int. J. Sports Med. 2012, 33, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Dellal, A.; Lago-Peñas, C.; Rey, E.; Chamari, K.; Orhant, E. The effects of a congested fixture period on physical performance, technical activity and injury rate during matches in a professional soccer team. Br. J. Sport Med. 2015, 49, 390–394. [Google Scholar] [CrossRef]
- Dupont, G.; Nedelec, M.; McCall, A.; McCormack, D.; Berthoin, S.; Wisløff, U. Effect of 2 Soccer Matches in a Week on Physical Performance and Injury Rate. Am. J. Sport Med. 2010, 38, 1752–1758. [Google Scholar] [CrossRef]
- Jones, R.N.; Greig, M.; Mawéné, Y.; Barrow, J.; Page, R.M. The influence of short-term fixture congestion on position specific match running performance and external loading patterns in English professional soccer. J. Sports Sci. 2019, 37, 1338–1346. [Google Scholar] [CrossRef]
- Lago-Peñas, C.; Rey, E.; Lago-Ballesteros, J.; Casáis, L.; Domínguez, E. The Influence of a Congested Calendar on Physical Performance in Elite Soccer. J. Strength Cond. Res. 2011, 25, 2111–2117. [Google Scholar] [CrossRef]
- Poulios, A.; Fatouros, I.G.; Mohr, M.; Draganidis, D.K.; Deli, C.; Papanikolaou, K.; Sovatzidis, A.; Nakopoulou, T.; Ermidis, G.; Tzatzakis, T.; et al. Post-Game High Protein Intake May Improve Recovery of Football-Specific Performance during a Congested Game Fixture: Results from the PRO-FOOTBALL Study. Nutrients 2018, 10, 494. [Google Scholar] [CrossRef]
- Bakker, R.; Tomescu, S.; Brenneman, E.; Hangalur, G.; Laing, A.; Chandrashekar, N. Effect of sagittal plane mechanics on ACL strain during jump landing. J. Orthop. Res. 2016, 34, 1636–1644. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sport Med. 2005, 33, 492–501. [Google Scholar] [CrossRef]
- McLean, S.G.; Oh, Y.K.; Palmer, M.L.; Lucey, S.M.; Lucarelli, D.G.; Ashton-Miller, J.A.; Wojtys, E.M. The Relationship Between Anterior Tibial Acceleration, Tibial Slope, and ACL Strain During a Simulated Jump Landing Task. J. Bone Jt. Surg. 2011, 93, 1310. [Google Scholar] [CrossRef] [PubMed]
- Demorat, G.; Weinhold, P.; Blackburn, T.; Chudik, S.; Garrett, W. Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury. Am. J. Sport Med. 2004, 32, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Margaria, R.; Aghemo, P.; Rovelli, E. Measurement of muscular power (anaerobic) in man. J. Appl. Physiol 1966, 21, 1662–1664. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Baker, R. ISB recommendation on definition of joint coordinate systems for the reporting of human joint motion—Part I: Ankle, hip and spine. J. Biomech. 2003, 2, 300–302. [Google Scholar] [CrossRef]
- Robertson, G. Research Methods in Biomechanics; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Sanna, G.; O’Connor, K.M. Fatigue-related changes in stance leg mechanics during sidestep cutting maneuvers. Clin. Biomech. 2008, 23, 946–954. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Psychology Press: New York, NY, USA, 2009. [Google Scholar]
- Lucci, S.; Cortes, N.; Van Lunen, B.; Ringleb, S.; Onate, J. Knee and hip sagittal and transverse plane changes after two fatigue protocols. J. Sci. Med. Sport 2011, 14, 453–459. [Google Scholar] [CrossRef]
- Butler, D.; Grood, E.S.; Noyes, F. Ligamentous restraints to anterior drawer in the human knee: A biomechanical study. J. Bone Jt. Surg. 1980, 62, 259–270. [Google Scholar] [CrossRef]
- Levine, J.W.; Kiapour, A.M.; Quatman, C.E.; Wordeman, S.C.; Goel, V.K.; Hewett, T.E.; Demetropoulos, C.K. Clinically Relevant Injury Patterns After an Anterior Cruciate Ligament Injury Provide Insight into Injury Mechanisms. Am. J. Sports Med. 2013, 41, 385–395. [Google Scholar] [CrossRef]
- Draganidis, D.; Chatzinikolaou, A.; Avloniti, A.; Barbero-Álvarez, J.C.; Mohr, M.; Malliou, P.; Gourgoulis, V.; Deli, C.K.; Douroudos, I.I.; Margonis, K.; et al. Recovery Kinetics of Knee Flexor and Extensor Strength after a Football Match. PLoS ONE 2015, 10, e0128072. [Google Scholar]
- McLean, S.G.; Samorezov, J.E. Fatigue-induced ACL injury risk stems from a degradation in central control. Med. Sci. Sports Exerc. 2009, 41, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Cortes, N.; Greska, E.; Kollock, R.; Ambegaonkar, J.; Onate, J.A. Changes in Lower Extremity Biomechanics Due to a Short-Term Fatigue Protocol. J. Athl. Train. 2013, 48, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Zebis, M.K.; Bencke, J.; Andersen, L.L.; Alkjær, T.; Suetta, C.; Mortensen, P.; Kjær, M.; Aagaard, P. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players. Scand. J. Med. Sci. Sports 2011, 21, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Cortes, N.; Greska, E.; Ambegaonkar, J.; Kollock, R.; Caswell, S.; Onate, J. Knee kinematics is altered post-fatigue while performing a crossover task. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2202–2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kernozek, T.W.; Torry, M.R.; Iwasaki, M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am. J. Sport Med. 2008, 36, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Pandy, M.G.; Shelburne, K.B. Dependence of cruciate-ligament loading on muscle forces and external load. J. Biomech. 1997, 30, 1015–1024. [Google Scholar] [CrossRef]
- Tsai, L.; Ko, Y.; Hammond, K.E.; Xerogeanes, J.W.; Warren, G.L.; Powers, C.M. Increasing hip and knee flexion during a drop-jump task reduces tibiofemoral shear and compressive forces: Implications for ACL injury prevention training. J. Sport Sci. 2017, 35, 2405–2411. [Google Scholar] [CrossRef]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. The Influence of Soccer Playing Actions on the Recovery Kinetics After a Soccer Match. J. Strength Cond. Res. 2014, 28, 1517–1523. [Google Scholar] [CrossRef]
Match 1 | Match 2 | Range (Both Matches) | |
---|---|---|---|
Minutes played | 77.5 ± 8.9 | 75 ± 12.2 | 63–90 |
Distance traveled (km) | 8.64 ± 0.51 | 8.36 ± 0.54 | 7.5–9.8 |
Decelerations | 42.3 ± 9.9 | 42.6 ± 4.3 | 28–62 |
Accelerations | 32.1 ± 9.6 | 28.8 ± 7.2 | 18–50 |
Sprints | 11.4 ± 9.5 | 9.1 ± 7.1 | 1–29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snyder, B.J.; Hutchison, R.E.; Mills, C.J.; Parsons, S.J. Effects of Two Competitive Soccer Matches on Landing Biomechanics in Female Division I Soccer Players. Sports 2019, 7, 237. https://doi.org/10.3390/sports7110237
Snyder BJ, Hutchison RE, Mills CJ, Parsons SJ. Effects of Two Competitive Soccer Matches on Landing Biomechanics in Female Division I Soccer Players. Sports. 2019; 7(11):237. https://doi.org/10.3390/sports7110237
Chicago/Turabian StyleSnyder, Benjamin J., Randolph E. Hutchison, Christopher J. Mills, and Stephen J. Parsons. 2019. "Effects of Two Competitive Soccer Matches on Landing Biomechanics in Female Division I Soccer Players" Sports 7, no. 11: 237. https://doi.org/10.3390/sports7110237
APA StyleSnyder, B. J., Hutchison, R. E., Mills, C. J., & Parsons, S. J. (2019). Effects of Two Competitive Soccer Matches on Landing Biomechanics in Female Division I Soccer Players. Sports, 7(11), 237. https://doi.org/10.3390/sports7110237