Nocturnal Activity Is Not Affected by a Long-Duration, Low-Intensity Single Exercise Bout
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Study Design
2.3. Exercise Protocol
2.4. Biochemical Blood Test
2.5. Questionnaires
2.6. Actigraphy
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pedersen, B.K.; Saltin, B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 3), 1–72. [Google Scholar] [CrossRef] [PubMed]
- Mitrou, G.I.; Grigoriou, S.S.; Konstantopoulou, E.; Theofilou, P.; Giannaki, C.D.; Stefanidis, I.; Karatzaferi, C.; Sakkas, G.K. Exercise training and depression in ESRD: A review. Semin. Dial. 2013, 26, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Giannaki, C.D.; Stefanidis, I.; Karatzaferi, C.; Liakos, N.; Roka, V.; Ntente, I.; Sakkas, G.K. The effect of prolonged intradialytic exercise in hemodialysis efficiency indices. ASAIO J. 2011, 57, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Giannaki, C.D.; Hadjigeorgiou, G.M.; Karatzaferi, C.; Maridaki, M.D.; Koutedakis, Y.; Founta, P.; Tsianas, N.; Stefanidis, I.; Sakkas, G.K. A single-blind randomized controlled trial to evaluate the effect of 6 months of progressive aerobic exercise training in patients with uraemic restless legs syndrome. Nephrol. Dial. Transplant. 2013, 28, 2834–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannaki, C.D.; Sakkas, G.K.; Hadjigeorgiou, G.M.; Karatzaferi, C.; Patramani, G.; Lavdas, E.; Liakopoulos, V.; Koutedakis, Y.; Stefanidis, I. Non-pharmacological management of periodic limb movements during hemodialysis session in patients with uremic restless legs syndrome. ASAIO J. 2010, 56, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, G.K.; Giannaki, C.D.; Karatzaferi, C.; Maridaki, M.; Koutedakis, Y.; Hadjigeorgiou, G.M.; Stefanidis, I. Current trends in the management of uremic restless legs syndrome: A systematic review on aspects related to quality of life, cardiovascular mortality and survival. Sleep Med. Rev. 2015, 21, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Parish, J.M. Sleep-related problems in common medical conditions. Chest 2009, 135, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Panossian, L.A.; Avidan, A.Y. Review of sleep disorders. Med. Clin. N. Am. 2009, 93, 407–425. [Google Scholar] [CrossRef] [PubMed]
- Hoevenaar-Blom, M.P.; Spijkerman, A.M.; Kromhout, D.; van den Berg, J.F.; Verschuren, W.M. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: The MORGEN study. Sleep 2011, 34, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Salo, P.; Oksanen, T.; Sivertsen, B.; Hall, M.; Pentti, J.; Virtanen, M.; Vahtera, J.; Kivimaki, M. Sleep disturbances as a predictor of cause-specific work disability and delayed return to work. Sleep 2010, 33, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Goldman, S.E.; Ancoli-Israel, S.; Boudreau, R.; Cauley, J.A.; Hall, M.; Stone, K.L.; Rubin, S.M.; Satterfield, S.; Simonsick, E.M.; Newman, A.B.; et al. Sleep problems and associated daytime fatigue in community-dwelling older individuals. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Giannaki, C.D.; Aristotelous, P.; Stefanakis, M.; Hadjigeorgiou, G.M.; Manconi, M.; Leonidou, E.; Sakkas, G.K.; Pantzaris, M. Restless legs syndrome in Multiple Sclerosis patients: A contributing factor for fatigue, impaired functional capacity, and diminished health-related quality of life. Neurol. Res. 2018, 40, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Horie, S.; Nagata, S.; Marui, E. Relationship between self-reported low productivity and overtime working. Occup. Med. 2004, 54, 52–54. [Google Scholar] [CrossRef] [Green Version]
- De Mello, M.T.; Narciso, F.V.; Tufik, S.; Paiva, T.; Spence, D.W.; Bahammam, A.S.; Verster, J.C.; Pandi-Perumal, S.R. Sleep disorders as a cause of motor vehicle collisions. Int. J. Prev. Med. 2013, 4, 246–257. [Google Scholar] [PubMed]
- Fullagar, H.H.; Skorski, S.; Duffield, R.; Hammes, D.; Coutts, A.J.; Meyer, T. Sleep and athletic performance: The effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015, 45, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Fullagar, H.H.; Duffield, R.; Skorski, S.; Coutts, A.J.; Julian, R.; Meyer, T. Sleep and Recovery in Team Sport: Current Sleep-Related Issues Facing Professional Team-Sport Athletes. Int. J. Sports Physiol. Perform. 2015, 10, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Kline, C.E.; Crowley, E.P.; Ewing, G.B.; Burch, J.B.; Blair, S.N.; Durstine, J.L.; Davis, J.M.; Youngstedt, S.D. The effect of exercise training on obstructive sleep apnea and sleep quality: A randomized controlled trial. Sleep 2011, 34, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Youngstedt, S.D. Effects of exercise on sleep. Clin. Sports Med. 2005, 24, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Giannaki, C.D.; Sakkas, G.K.; Karatzaferi, C.; Hadjigeorgiou, G.M.; Lavdas, E.; Liakopoulos, V.; Tsianas, N.; Koukoulis, G.N.; Koutedakis, Y.; Stefanidis, I. Evidence of increased muscle atrophy and impaired quality of life parameters in patients with uremic restless legs syndrome. PLoS ONE 2011, 6, e25180. [Google Scholar] [CrossRef] [PubMed]
- Larsson, B.W.; Kadi, F.; Ulfberg, J.; Aulin, K.P. Skeletal muscle morphology in patients with restless legs syndrome. Eur. Neurol. 2007, 58, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Aukerman, M.M.; Aukerman, D.; Bayard, M.; Tudiver, F.; Thorp, L.; Bailey, B. Exercise and restless legs syndrome: A randomized controlled trial. J. Am. Board Fam. Med. 2006, 19, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.M.; de Mello, M.T.; Pradella-Hallinan, M.; Tufik, S. Effect of acute and chronic physical exercise on patients with periodic leg movements. Med. Sci. Sports Exerc. 2009, 41, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Lesage, S.; Hening, W.A. The restless legs syndrome and periodic limb movement disorder: A review of management. Semin. Neurol. 2004, 24, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Mah, C.D.; Kezirian, E.J.; Marcello, B.M.; Dement, W.C. Poor sleep quality and insufficient sleep of a collegiate student-athlete population. Sleep Health 2018, 4, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Sargent, C.; Lastella, M.; Halson, S.L.; Roach, G.D. The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiol. Int. 2014, 31, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Gupta, L.; Morgan, K.; Gilchrist, S. Does Elite Sport Degrade Sleep Quality? A Systematic Review. Sports Med. 2017, 47, 1317–1333. [Google Scholar] [CrossRef] [PubMed]
- Juliff, L.E.; Halson, S.L.; Peiffer, J.J. Understanding sleep disturbance in athletes prior to important competitions. J. Sci. Med. Sport 2015, 18, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killer, S.C.; Svendsen, I.S.; Jeukendrup, A.E.; Gleeson, M. Evidence of disturbed sleep and mood state in well-trained athletes during short-term intensified training with and without a high carbohydrate nutritional intervention. J. Sports Sci. 2017, 35, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Kolling, S.; Wiewelhove, T.; Raeder, C.; Endler, S.; Ferrauti, A.; Meyer, T.; Kellmann, M. Sleep monitoring of a six-day microcycle in strength and high-intensity training. Eur. J. Sport Sci. 2016, 16, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Brand, S.; Gerber, M.; Beck, J.; Hatzinger, M.; Puhse, U.; Holsboer-Trachsler, E. High exercise levels are related to favorable sleep patterns and psychological functioning in adolescents: A comparison of athletes and controls. J. Adolesc. Health 2010, 46, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Myllymaki, T.; Kyrolainen, H.; Savolainen, K.; Hokka, L.; Jakonen, R.; Juuti, T.; Martinmaki, K.; Kaartinen, J.; Kinnunen, M.L.; Rusko, H. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J. Sleep Res. 2011, 20, 146–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breus, M.J.; O’Connor, P.J.; Ragan, S.T. Muscle pain induced by novel eccentric exercise does not disturb the sleep of normal young men. J. Pain 2000, 1, 67–76. [Google Scholar] [CrossRef]
- Proske, U.; Morgan, D.L. Muscle damage from eccentric exercise: Mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 2001, 537, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, O.; Douzi, W.; Theurot, D.; Bosquet, L.; Dugue, B. An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front. Physiol. 2018, 9, 403. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef] [PubMed]
- Hoxie, R.E.; Rubenstein, L.Z. Are older pedestrians allowed enough time to cross intersections safely? J. Am. Geriatr. Soc. 1994, 42, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Kosinski, M.; Bayliss, M.S.; McHorney, C.A.; Rogers, W.H.; Raczek, A. Comparison of methods for the scoring and statistical analysis of SF-36 health profile and summary measures: Summary of results from the Medical Outcomes Study. Med Care 1995, 33, AS264–AS279. [Google Scholar] [PubMed]
- Sakkas, G.K.; Gourgoulianis, K.I.; Karatzaferi, C.; Liakopoulos, V.; Maridaki, M.D.; Pastaka, C.; Lavdas, E.; Soher, B.J.; Dovas, S.; Fezoulidis, I.; et al. Haemodialysis patients with sleep apnoea syndrome experience increased central adiposity and altered muscular composition and functionality. Nephrol. Dial. Transplant. 2008, 23, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Mystakidou, K.; Parpa, E.; Tsilika, E.; Pathiaki, M.; Gennatas, K.; Smyrniotis, V.; Vassiliou, I. The relationship of subjective sleep quality, pain, and quality of life in advanced cancer patients. Sleep 2007, 30, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.P.; Picchietti, D.; Hening, W.A.; Trenkwalder, C.; Walters, A.S.; Montplaisi, J.; Restless Legs Syndrome, D.; Epidemiology workshop at the National Institutes of Health; International Restless Legs Syndrome Study Group. Restless legs syndrome: Diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med. 2003, 4, 101–119. [Google Scholar] [CrossRef]
- Melzack, R. The McGill Pain Questionnaire: Major properties and scoring methods. Pain 1975, 1, 277–299. [Google Scholar] [CrossRef]
- Katsarou, Z.; Bostantjopoulou, S.; Hatzizisi, O.; Giza, E.; Soler-Cardona, A.; Kyriazis, G. Immune factors or depression? Fatigue correlates in Parkinson’s disease. Rev. Neurol. 2007, 45, 725–728. [Google Scholar] [PubMed]
- Buman, M.P.; Phillips, B.A.; Youngstedt, S.D.; Kline, C.E.; Hirshkowitz, M. Does nighttime exercise really disturb sleep? Results from the 2013 National Sleep Foundation Sleep in America Poll. Sleep Med. 2014, 15, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Phillips, B.; Young, T.; Finn, L.; Asher, K.; Hening, W.A.; Purvis, C. Epidemiology of restless legs symptoms in adults. Arch. Intern. Med. 2000, 160, 2137–2141. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grieve, J.I. Heart rate and daily activities of housewives with young children. Ergonomics 1972, 15, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Howatson, G.; Milak, A. Exercise-induced muscle damage following a bout of sport specific repeated sprints. J. Strength Cond. Res. 2009, 23, 2419–2424. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Green, H.J.; Tarnopolsky, M.A.; Heigenhauser, G.F.; Hill, R.E.; Grant, S.M. Effects of training duration on substrate turnover and oxidation during exercise. J. Appl. Physiol. (1985) 1996, 81, 2182–2191. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, E.A.; Blomstrand, E.; Ekblom, B. Physical and mental fatigue: Metabolic mechanisms and importance of plasma amino acids. Br. Med. Bull. 1992, 48, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Huffman, D.M.; Altena, T.S.; Mawhinney, T.P.; Thomas, T.R. Effect of n-3 fatty acids on free tryptophan and exercise fatigue. Eur. J. Appl. Physiol. 2004, 92, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski, A. Melatonin in humans. N. Engl. J. Med. 1997, 336, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Shioda, K.; Morita, Y.; Kubota, C.; Ganeko, M.; Takeda, N. Exercise effects on sleep physiology. Front. Neurol. 2012, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, M.G.; Paschalis, V.; Giakas, G.; Fatouros, I.G.; Sakellariou, G.K.; Theodorou, A.A.; Koutedakis, Y.; Jamurtas, A.Z. Favorable and prolonged changes in blood lipid profile after muscle-damaging exercise. Med. Sci. Sports Exerc. 2008, 40, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
Variables | Participants |
---|---|
N | 21 |
Gender | 12M/9F |
Age (years) | 24 ± 3.7 |
BMI (kg/m²) | 22.4 ± 2.4 |
Physical Component Summary (SF36) | 81.7 ± 14.4 |
Mental Component Summary (SF36) | 75.6 ± 15.0 |
Total Score (SF36) | 80.3 ± 14.1 |
Pittsburgh | 7.4 ± 5.5 |
Fatigue Severity Scale | 3.2 ± 1.2 |
RLS | Negative |
Variables | Day 2 | Day 5 | p values |
---|---|---|---|
CRP (mg/L) | 0.4 ± 0.3 | 0.5 ± 0.2 | F1.000, 9.000 = 6.342, p = 0.608 |
Urea (mg/dl) | 26.2 ± 7.0 | 25.7 ± 5.4 | F1.000, 9.000 = 0.013, p = 0.836 |
Cr (mg/dl) | 0.8 ± 0.1 | 0.8 ± 0.1 | F1.000, 9.000 = 1.279, p = 0.611 |
ALB (g/dl) | 3.5 ± 0.5 | 3.3 ± 0.7 | F1.000, 9.000 = 1.503, p = 0.405 |
CPK (IU/L) | 107.9 ± 179.5 | 88.5 ± 100.9 | F1.000, 9.000 = 0.375, p = 0.731 |
Total CHO (mg/dl) | 124.1 ± 24.6 | 111.7 ± 29.2 | F1.000, 9.000 = 1.441, p = 0.226 |
TG (mg/dl) | 75.4 ± 24.0 | 59.9 ± 24.2 | F1.000, 9.000 = 0.924, p = 0.094 |
HDL (mg/dl) | 37.9 ± 10.8 | 37.0 ± 12.0 | F1.000, 9.000 = 1.471, p = 0.827 |
LDL (mg/dl) | 70.9 ± 17.1 | 62.7 ± 17.6 | F1.000, 9.000 = 7.010, p = 0.213 |
HDL/LDL (mg/dl) | 0.55 ± 0.18 | 0.61 ± 0.19 | F1.000, 9.000 = 0.029, p = 0.437 |
Total CHO/HDL ratio (mg/dl) | 3.48 ± 1.0 | 3.12 ± 0.55 | F1.000, 9.000 = 0.309, p = 0.281 |
Fe (ug/dl) | 61.9 ± 30.4 | 79.0 ± 26.6 | F1.000, 9.000 = 0.840, p = 0.123 |
FER (ng/dl) | 66.1 ± 37.8 | 60.7 ± 30.5 | F1.000, 9.000 = 0.165, p = 0.679 |
Variables | Day 1 | Day 2 | Day 3 | Day 4 | p Values |
---|---|---|---|---|---|
TIB (in minutes) | 423.1 ± 74.8 | 456.6 ± 65.9 | 427.3 ± 70.4 | 441.1 ± 91.2 | F2.820, 47,948 = 1.1440, p = 0.479 |
ILMS | 75.0 ± 39.7 | 87.7 ± 34.7 | 84.6 ± 32.4 | 88.3 ± 44.2 | F2.216, 36.671 = 0.737, p = 0.649 |
ILMS index (per hour) | 10.6 ± 5.1 | 11.5 ± 4.1 | 11.8 ± 4.2 | 11.7 ± 4.8 | F2.358, 40.092 = 0.339, p = 0.833 |
PLMS | 14.9 ± 12.3 | 17.4 ± 12.8 | 20.9 ± 26.1 | 14.7 ± 11.8 | F1.303, 7.817 = 0.207, p = 0.694 |
PLMS index (per hour) | 2.0 ± 1.4 | 2.3 ± 1.7 | 3.1 ± 4.3 | 1.9 ± 1.7 | F1.335, 8.010 = 0.441, p = 0.553 |
PLMS power [45] | 22.8 ± 3.5 | 21.9 ± 2.0 | 23.7 ± 3.5 | 21.7 ± 3.4 | F1.990, 11.939 = 1.068, p = 0.262 |
PLMS amplitude [45] | 70.4 ± 43.5 | 52.1 ± 21.5 | 62.8 ± 24.7 | 55.5 ± 28.1 | F1.509, 9.054 = 0.047, p = 0.332 |
PLMS duration (s) | 2.9 ± 1.6 | 2.3 ± 0.9 | 2.5 ± 0.9 | 2.4 ± 1.0 | F1.613, 9.677 = 0.073, p = 0.480 |
Position changes | 15.8 ± 8.2 | 18.4 ± 9.2 | 21.1 ± 9.7 | 19.6 ± 11.4 | F2.408, 38.521 = 0.470, p = 0.354 |
Position changes index (per hour) | 2.2 ± 1.0 | 2.4 ± 1.0 | 2.9 ± 1.4 | 2.6 ± 1.4 | F2.158, 34.530 = 0.121, p = 0.280 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrou, G.I.; Giannaki, C.D.; Karatzaferi, C.; Hadjigeorgiou, G.M.; Lavdas, E.; Maridaki, M.D.; Stefanidis, I.; Sakkas, G.K. Nocturnal Activity Is Not Affected by a Long-Duration, Low-Intensity Single Exercise Bout. Sports 2019, 7, 56. https://doi.org/10.3390/sports7030056
Mitrou GI, Giannaki CD, Karatzaferi C, Hadjigeorgiou GM, Lavdas E, Maridaki MD, Stefanidis I, Sakkas GK. Nocturnal Activity Is Not Affected by a Long-Duration, Low-Intensity Single Exercise Bout. Sports. 2019; 7(3):56. https://doi.org/10.3390/sports7030056
Chicago/Turabian StyleMitrou, Georgia I., Christoforos D. Giannaki, Christina Karatzaferi, Georgios M. Hadjigeorgiou, Eleftherios Lavdas, Maria D. Maridaki, Ioannis Stefanidis, and Giorgos K. Sakkas. 2019. "Nocturnal Activity Is Not Affected by a Long-Duration, Low-Intensity Single Exercise Bout" Sports 7, no. 3: 56. https://doi.org/10.3390/sports7030056
APA StyleMitrou, G. I., Giannaki, C. D., Karatzaferi, C., Hadjigeorgiou, G. M., Lavdas, E., Maridaki, M. D., Stefanidis, I., & Sakkas, G. K. (2019). Nocturnal Activity Is Not Affected by a Long-Duration, Low-Intensity Single Exercise Bout. Sports, 7(3), 56. https://doi.org/10.3390/sports7030056