Physiological and Biomechanical Evaluation of a Training Macrocycle in Children Swimmers
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Changes in 400-m Time, Stroke Rate, Stroke Length, Stroke Index, and Anthropometry
3.2. Physiological Responses and Rating of Perceived Exertion Following 400-m
3.3. Correlations between Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, D. A framework for understanding the training process leading to elite performance. Sports Med. 2003, 33, 1103–1126. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Marinho, D.A.; Bragada, J.A.; Silva, A.J.; Barbosa, T.M. Stability of elite freestyle performance from childhood to adulthood. J. Sports Sci. 2011, 29, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Figueiredo, P.; Soares, S.; Seifert, L.; Vilas-Boas, J.P.; Fernandes, R. Front crawl technical characterization of 11- to 13-year-old swimmers. Pediatr. Exerc. Sci. 2012, 24, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Marques, M.C.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Longitudinal modeling in sports: Young swimmers’ performance and biomechanics profile. Hum. Mov. Sci. 2014, 37, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Figueiredo, P.; Ribeiro, J.; Alves, F.; Vilas-Boas, J.P.; Seifert, L.; Fernandes, R. Integrated analysis of young swimmers’ sprint performance. Motor Control 2019. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suarez, V.; Fernandes, R.; de Jesus, K.; Pelarigo, J.; Arroyo-Toledo, J.; Vilas-Boas, J.P. Do traditional and reverse swimming training periodizations lead to similar aerobic performance improvements? J. Sports Med. Phys. Fit. 2018, 58, 761–767. [Google Scholar]
- Barbosa, T.M.; Morais, J.E.; Marques, M.C.; Silva, A.J.; Marinho, D.A.; Kee, Y.H. Hydrodynamic profile of young swimmers: Changes over a competitive season. Scand. J. Med. Sci. Sports 2016, 25, e184–e196. [Google Scholar] [CrossRef] [PubMed]
- Sperlich, B.; Zinner, C.; Heilemann, I.; Kjendlie, P.-L.; Holmberg, H.-C.; Mester, J. High-intensity interval training improves VO2peak, maximal lactate accumulation, time trial and competitive performance in 9–11 year-old swimmers. Eur. J. Appl. Physiol. 2010, 110, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Gourgoulis, V.; Valkoumas, I.; Boli, A.; Aggeloussis, N.; Antoniou, P. Effect of an 11-week in-water training program with increased resistance on the swimming performance and the basic kinematic characteristics of the front crawl stroke. J. Strength Cond. Res. 2019, 33, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Zacca, R.; Azevedo, R.; Chainok, P.; Vilas-Boas, J.-P.; Castro, F.A.S.; Pyne, D.B.; Fernandes, R.J. Monitoring age-group swimmers over a training macrocycle: Energetic, technique, and anthropometrics. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Zacca, R.; Azevedo, R.; Ramos, V.R.; Abraldes, J.A.; Vilas-Boas, J.-P.; Castro, F.A.S.; Pyne, D.B.; Fernandes, R.J. Biophysical follow-up of age-group swimmers during a traditional three-peak preparation program. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Latt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Physical development and swimming performance during biological maturation in young female swimmers. Coll. Anthropol. 2009, 1, 117–122. [Google Scholar]
- Latt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Longitudinal development of physical and performance parameters during biological maturation of young male swimmers. Percept. Mot. Skills 2009, 108, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.J.; Billat, V.; Cruz, A.C.; Colaço, P.J.; Cardoso, C.S.; Vilas-Boas, J.P. Does energy cost of swimming affect time to exhaustion at the individual’s maximal oxygen consumption velocity? J. Sports Med. Phys. Fit. 2006, 46, 373–380. [Google Scholar]
- Obert, P.; Mandigout, S.; Vinet, A.; N’Guyen, L.D.; Stecken, F.; Courteix, D. Effect of aerobic training and detraining on left ventricular dimensions and diastolic function in prepubertal boys and girls. Int. J. Sports Med. 2001, 22, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M.; Whitehouse, R.H. Atlas of Children’s Growth Normal Variation and Growth Disorders; Academic Press: London, UK, 1982. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Laffite, L.P.; Vilas-Boas, J.P.; Demarle, A.; Silva, J.; Fernandes, R.; Billat, V. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can. Appl. Physiol. 2004, 29, S17–S31. [Google Scholar] [CrossRef]
- Sengoku, Y.; Nakamura, K.; Takeda, T.; Nabekura, Y.; Tsubakimoto, S. Glucose response after a ten-week training in swimming. Int. J. Sports Med. 2011, 32, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Toubekis, A.; Christoforou, N.; Laparidis, K.; Tahtalis, T.; Tokmakidis, S. Different levels of hydration following a training session on swimming performance. Port. J. Sport Sci. 2006, 6, 319–321. [Google Scholar]
- Soultanakis, H.; Platanou, T. Effect of dietary carbohydrate content on blood glucose levels of swimmers during training. J. Sports Med. Phys. Fit. 2008, 48, 335–340. [Google Scholar]
- Singh, T.P.; Rhodes, J.; Gauvreau, K. Determinants of heart rate recovery following exercise in children. Med. Sci. Sports Exerc. 2008, 40, 601–605. [Google Scholar] [CrossRef] [PubMed]
Measured Variables | Boys (n = 14) | Girls (n = 29) | Total Sample (n = 43) |
---|---|---|---|
Chronological age (years) | 11.90 ± 1.08 | 10.74 ± 0.91 | 11.62 ± 1.19 |
Body mass (kg) | 45.02 ± 9.27 | 40.36 ± 8.43 | 43.50 ± 9,17 |
Stature (m) | 1.53 ± 0.10 | 1.46 ± 0.09 | 1.51 ± 0.10 |
Tanner stage | 2.93 ± 0.95 | 2.71 ± 1.15 | 2.86 ± 1.02 |
Training sessions per week | 5.79 ± 0.62 | 5.43 ± 1.16 | 5.67 ± 0.84 |
Training Type | General Preparation Period | Specific Preparation Period | Competitive Period |
---|---|---|---|
Aerobic training | 96% | 93% | 84% |
Anaerobic training | 4% | 7% | 16% |
Technical training | 32% | 31% | 21% |
Measured Variables | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Body mass (kg) | 43.50 ± 9.17 | 44.11 ± 9.20 | 43.90 ± 8.92 | 44.67 ± 9.35 * |
Stature (m) | 1.51 ± 0.10 | 1.52 ± 0.11 * | 1.53 ± 0.11 * | 1.54 ± 0.10 *+ |
Time 400-m (s) | 444.40 ± 76.95 | 426.00 ± 67.61 * | 412.83 ± 61.11 *+ | 408.95 ± 61.40 *+ |
Blood lactate (mmol∙L−1) | 5.97 ± 2.37 | 6.47 ± 3.06 | 5.72 ± 2.16 | 6.24 ± 2.56 |
Blood glucose (mmol∙L−1) | 109.05 ± 16.02 | 111.02 ± 16.42 | 93.33 ± 16.99 *+ | 101.30 ± 19.61 *+× |
Rate of perceived exertion | 14.88 ± 1.95 | 14.88 ± 2.04 | 14.74 ± 2.22 | 14.95 ± 2.32 |
Stroke rate (cycles∙min−1) | 36.3 ± 3.9 | 36.7 ± 4.3 | 37.3 ± 4.4 * | 37.1 ± 4.4 * |
Stroke length (m∙cycle−1) | 1.541 ± 0.242 | 1.587 ± 0.237 * | 1.607±0.241 * | 1.632 ± 0.226 *+ |
Stroke index (m2∙s−1∙cycle−1) | 1.455 ± 0.451 | 1.553 ± 0.448 * | 1.615 ± 0.451 *+ | 1.656 ± 0.442 *+ |
400-m Speed | Body Mass | Stature | Stroke Rate | Stroke Length | Stroke Index | Blood Lactate | Blood Glucose |
---|---|---|---|---|---|---|---|
T1 | 0.36 (0.02) | 0.46 (0.01) | 0.48 (0.01) | 0.77 (0.00) | 0.93 (0.00) | 0.46 (0.01) | 0.45 (0.01) |
T2 | 0.36 (0.02) | 0.48 (0.01) | 0.54 (0.01) | 0.70 (0.00) | 0.92 (0.00) | 0.40 (0.01) | 0.51 (0.01) |
T3 | 0.38 (0.02) | 0.48 (0.01) | 0.46 (0.01) | 0.67 (0.00) | 0.91 (0.00 | 0.38 (0.02) | 0.58 (0.01) |
T4 | 0.34 (0.04) | 0.43 (0.01) | 0.61 (0.01) | 0.65 (0.00) | 0.92 (0.00) | 0.64 (0.01) | 0.60 (0.01) |
400-m Speed | Stroke Rate | Stroke Length | Stroke Index | Blood Lactate | Blood Glucose |
---|---|---|---|---|---|
T2–T1 | 0.25 (0.11) | 0.45 (0.01) * | 0.83 (0.00) * | 0.18 (0.24) | 0.03 (0.82) |
T3–T2 | 0.48 (0.01) * | 0.20 (0.19) | 0.68 (0.00) * | 0.34 (0.03) * | 0.42 (0.01) * |
T4–T3 | 0.19 (0.21) | 0.34 (0.02) * | 0.70 (0.00) * | 0.53 (0.01) * | 0.15 (0.33) |
T4–T1 | 0.17 (0.29) | 0.56 (0.00) * | 0.87 (0.00) * | 0.36 (0.02) * | 0.34 (0.03) * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, S.; Carvalho, D.; Monteiro, A.S.; Abraldes, J.A.A.; Vilas-Boas, J.P.; Toubekis, A.; Fernandes, R. Physiological and Biomechanical Evaluation of a Training Macrocycle in Children Swimmers. Sports 2019, 7, 57. https://doi.org/10.3390/sports7030057
Ferreira S, Carvalho D, Monteiro AS, Abraldes JAA, Vilas-Boas JP, Toubekis A, Fernandes R. Physiological and Biomechanical Evaluation of a Training Macrocycle in Children Swimmers. Sports. 2019; 7(3):57. https://doi.org/10.3390/sports7030057
Chicago/Turabian StyleFerreira, Sara, Diogo Carvalho, Ana Sofia Monteiro, José Arturo Arturo Abraldes, João Paulo Vilas-Boas, Argyris Toubekis, and Ricardo Fernandes. 2019. "Physiological and Biomechanical Evaluation of a Training Macrocycle in Children Swimmers" Sports 7, no. 3: 57. https://doi.org/10.3390/sports7030057
APA StyleFerreira, S., Carvalho, D., Monteiro, A. S., Abraldes, J. A. A., Vilas-Boas, J. P., Toubekis, A., & Fernandes, R. (2019). Physiological and Biomechanical Evaluation of a Training Macrocycle in Children Swimmers. Sports, 7(3), 57. https://doi.org/10.3390/sports7030057