The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges
Abstract
:1. Introduction
2. The Challenges and Drawbacks of the 1-Repetition Maximum Paradigm
3. Technologies to Track Velocity for Resistance Training
4. Determination of Individual Load–Velocity Profiles in Team Sport
5. Considerations for a Successful Implementation of a Velocity-Based Program
- The most relevant consideration when training based on the velocity of execution (VBT) is that velocity must be the maximal intended. If the athlete does not perform with a maximal intended velocity (regardless of the load (mass) or %1RM), the results would be underestimated [61].
- VBT is not specific for velocity-oriented sessions or exercises; it is a RT methodology based on the velocity of execution, used to prescribe, monitor and analyze RT. The velocity of execution can be used at different %RM (percentage-based training), including heavy loads; choosing appropriate and key exercises is paramount.
- While the 1RM might vary within days, the velocity at each 1RM percentage when individual load–velocity profiles are computed is very stable [62]. Therefore, the velocity of execution with a fixed absolute load can be a good indicator of effort and actual (current) performance.
- The velocity measured is both load (%RM) and exercise dependent. It has been shown that different exercises have unique velocities associated with each percentage of the 1RM (Table 2).
- Practitioners can benefit from combining objective and subjective scales to improve the accuracy of the training load prescription. As observed in a recent review on the topic, both objective (i.e., mean concentric velocity) and subjective measurements (i.e., repetitions in reserve) can help to enhance muscular strength by prescribing training loads that take into account the athlete’s daily fluctuations in performance or fatigue [66]. Moreover, it has been observed that the combination of MCV and RIR increases the accuracy of the 1RM estimation in comparison with using MCV alone [59].
- The mean velocity might represent different levels of effort depending on the anthropometric profile. It is paramount to create individual load–velocity profiles for each athlete, especially if the players within a team have large differences in their anthropometrics. This can be especially relevant in sports like basketball, where limb lengths can have a wide range between players. For example, two players can lift the same relative load (i.e., %1RM) in the bench press at 0.8 m·s−1, but player-A barbell’s displacement is 0.35 m, while for player-B it is 0.6 m; this means that player-B has produced the same velocity as player-A, but in almost twice the time (0.75 s for player-B vs. 0.43 s for player-A). Thus, player-B spends more time under tension, meaning that the overall effort for the same velocity might be higher for player-B than for player-A.
6. Prescribing and Monitoring Training Loads with VBT
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sport. Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Folland, J.P.; Williams, A.G. The Adaptations to Strength Training. Sport. Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, L.; Read, P.; Bishop, C.; Papadopoulos, K.; Suchomel, T.J.; Comfort, P.; Turner, A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sport. Med. 2020, 50, 1431–1450. [Google Scholar] [CrossRef] [PubMed]
- Lauersen, J.B.; Bertelsen, D.M.; Andersen, L.B. The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2014, 48, 871–877. [Google Scholar] [CrossRef]
- Androulakis-Korakakis, P.; Fisher, J.P.; Steele, J. The Minimum Effective Training Dose Required to Increase 1RM Strength in Resistance-Trained Men: A Systematic Review and Meta-Analysis. Sport. Med. 2020, 50, 751–765. [Google Scholar] [CrossRef]
- Harries, S.K.; Lubans, D.R.; Callister, R. Systematic Review and Meta-analysis of Linear and Undulating Periodized Resistance Training Programs on Muscular Strength. J. Strength Cond. Res. 2015, 29, 1113–1125. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2020. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Richter, G. Ein Trainergerät zur Objektivierung der sportartspezifischen Schnellkraftfähigkeit und zur Trainingssteuerung im Gewichtheben. Theor. Prax. Leistungssports 1973, 11, 241–263. Available online: https://www.iat.uni-leipzig.de/datenbanken/iks/tupl/Record/1001269 (accessed on 30 March 2021).
- Pareja-Blanco, F.; Alcazar, J.; Sánchez-Valdepeñas, J.; Cornejo-Daza, P.J.; Piqueras-Sanchiz, F.; Mora-Vela, R.; Sánchez-Moreno, M.; Bachero-Mena, B.; Ortega-Becerra, M.; Alegre, L.M. Velocity Loss as a Critical Variable Determining the Adaptations to Strength Training. Med. Sci. Sport. Exerc. 2020, 1. [Google Scholar] [CrossRef]
- García-Ramos, A.; Haff, G.G.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Balsalobre-Fernández, C.; Jaric, S. Feasibility of the 2-Point Method for Determining the 1-Repetition Maximum in the Bench Press Exercise. Int. J. Sports Physiol. Perform. 2018, 13, 474–481. [Google Scholar] [CrossRef]
- Dorrell, H.F.; Smith, M.F.; Gee, T.I. Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J. Strength Cond. Res. 2020, 34, 46–53. [Google Scholar] [CrossRef]
- Rivière, J.; Rossi, J.; Jimenez-Reyes, P.; Morin, J.-B.; Samozino, P. Where does the One-Repetition Maximum Exist on the Force-Velocity Relationship in Squat? Int. J. Sports Med. 2017, 38, 1035–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, B.J.; Wilson, J.M.; Lowery, R.P.; Krieger, J.W. Muscular adaptations in low- versus high-load resistance training: A meta-analysis. Eur. J. Sport Sci. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Travis, S.K.; Mujika, I.; Gentles, J.A.; Stone, M.H.; Bazyler, C.D. Tapering and Peaking Maximal Strength for Powerlifting Performance: A Review. Sports 2020, 8, 125. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sport. Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Orange, S.T.; Metcalfe, J.W.; Robinson, A.; Applegarth, M.J.; Liefeith, A. Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. Int. J. Sports Physiol. Perform. 2019, 15, 554–561. [Google Scholar] [CrossRef]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef] [Green Version]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Differences in the Load–Velocity Profile Between 4 Bench-Press Variants. Int. J. Sports Physiol. Perform. 2018, 13, 326–331. [Google Scholar] [CrossRef]
- Davies, T.; Orr, R.; Halaki, M.; Hackett, D. Effect of Training Leading to Repetition Failure on Muscular Strength: A Systematic Review and Meta-Analysis. Sport. Med. 2016, 46, 487–502. [Google Scholar] [CrossRef]
- Bosquet, L.; Porta-Benache, J.; Blais, J. Validity of a commercial linear encoder to estimate bench press 1 RM from the force-velocity relationship. J. Sports Sci. Med. 2010, 9, 459–463. [Google Scholar] [PubMed]
- Thompson, S.W.; Rogerson, D.; Dorrell, H.F.; Ruddock, A.; Barnes, A. The Reliability and Validity of Current Technologies for Measuring Barbell Velocity in the Free-Weight Back Squat and Power Clean. Sports 2020, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; Kuzdub, M.; Poveda-Ortiz, P.; Campo-Vecino, J. Del Validity and Reliability of the PUSH Wearable Device to Measure Movement Velocity During the Back Squat Exercise. J. Strength Cond. Res. 2016, 30, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; Geiser, G.; Krzyszkowski, J.; Kipp, K. Validity and reliability of a computer-vision-based smartphone app for measuring barbell trajectory during the snatch. J. Sports Sci. 2020, 38, 710–716. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Marchante, D.; Muñoz-López, M.; Jiménez, S.L. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J. Sports Sci. 2018, 36, 64–70. [Google Scholar] [CrossRef]
- de Sá, E.C.; Ricarte Medeiros, A.; Santana Ferreira, A.; García Ramos, A.; Janicijevic, D.; Boullosa, D. Validity of the iLOAD® app for resistance training monitoring. PeerJ 2019, 7, e7372. [Google Scholar] [CrossRef] [Green Version]
- Lake, J.; Augustus, S.; Austin, K.; Comfort, P.; McMahon, J.; Mundy, P.; Haff, G.G. The reliability and validity of the bar-mounted PUSH Band TM 2.0 during bench press with moderate and heavy loads. J. Sports Sci. 2019, 37, 2685–2690. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Banyard, H.G.; Nosaka, K.; Sato, K.; Haff, G.G. Validity of Various Methods for Determining Velocity, Force and Power in the Back Squat. Int. J. Sports Physiol. Perform. 2017, 12, 1170–1176. [Google Scholar] [CrossRef]
- Cormie, P.; McCaulley, G.O.; Triplett, N.T.; McBride, J.M. Optimal loading for maximal power output during lower-body resistance exercises. Med. Sci. Sport. Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef]
- Harris, N.K.; Cronin, J.; Taylor, K.-L.; Boris, J.; Sheppard, J. Understanding Position Transducer Technology for Strength and Conditioning Practitioners. Strength Cond. J. 2010, 32, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Validation of power measurement techniques in dynamic lower body resistance exercises. J. Appl. Biomech. 2007, 23, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro Neto, F.; Dorneles, J.R.; Luna, R.M.; Spina, M.A.; Gonçalves, C.W.; Gomes Costa, R.R. Performance Differences Between the Arched and Flat Bench Press in Beginner and Experienced Paralympic Powerlifters. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Garrido-Blanca, G.; Delgado-García, G.; Balsalobre-Fernández, C.; García-Ramos, A. Precision of 7 Commercially Available Devices for Predicting the Bench Press 1-Repetition Maximum from the Individual Load-Velocity Relationship. Int. J. Sports Physiol. Perform. 2019, 14, 1442–1446. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Cardiel-García, M.; Jiménez, S.L. Bilateral and unilateral load-velocity profiling in a machine-based, single-joint, lower body exercise. PLoS ONE 2019, 14, e0222632. [Google Scholar] [CrossRef]
- Jaric, S.; Garcia-Ramos, A. Letter to the editor concerning the article “Bar velocities capable of optimising the muscle power in strength-power exercises” by Loturco, Pereira, Abad, Tabares, Moraes, Kobal, Kitamura & Nakamura (2017). J. Sports Sci. 2018, 36, 994–996. [Google Scholar] [CrossRef]
- Morin, J.B.; Samozino, P. Interpreting power-force-velocity profiles for individualized and specific training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef]
- Winter, E.M.; Abt, G.; Brookes, F.B.C.; Challis, J.H.; Fowler, N.E.; Knudson, D.V.; Knuttgen, H.G.; Kraemer, W.J.; Lane, A.M.; van Mechelen, W.; et al. Misuse of “Power” and other mechanical terms in Sport and Exercise Science Research. J. Strength Cond. Res. 2016, 30, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.A.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Anderson, J.M.; Maresh, C.M. Maximal power at different percentages of one repetition maximum: Influence of resistance and gender. J. Strength Cond. Res. 2007, 21, 336–342. [Google Scholar] [CrossRef]
- Soriano, M.A.; Jiménez-Reyes, P.; Rhea, M.R.; Marín, P.J. The Optimal Load for Maximal Power Production During Lower-Body Resistance Exercises: A Meta-Analysis. Sport. Med. 2015, 45, 1191–1205. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Abad, C.C.C.; Tabares, F.; Moraes, J.E.; Kobal, R.; Kitamura, K.; Nakamura, F.Y. Bar velocities capable of optimising the muscle power in strength-power exercises. J. Sports Sci. 2017, 35, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; Suchomel, T.J.; Marín, P.J. The Optimal Load for Maximal Power Production During Upper-Body Resistance Exercises: A Meta-Analysis. Sport. Med. 2017, 47, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; Deane, R.; McBride, J.M. Methodological concerns for determining power output in the jump squat. J. Strength Cond. Res. 2007, 21, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Jaric, S.; Markovic, G. Body mass maximizes power output in human jumping: A strength-independent optimum loading behavior. Eur. J. Appl. Physiol. 2013, 113, 2913–2923. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Pareja-Blanco, F.; Balsalobre-Fernández, C.; Cuadrado-Peñafiel, V.; Ortega-Becerra, M.A.; González-Badillo, J.J. Jump-Squat Performance and Its Relationship with Relative Training Intensity in High-Level Athletes. Int. J. Sports Physiol. Perform. 2015, 10, 1036–1040. [Google Scholar] [CrossRef]
- McBride, J.M.; Haines, T.L.; Kirby, T.J. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J. Sports Sci. 2011, 29, 1215–1221. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Mean velocity vs. mean propulsive velocity vs. peak velocity. J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the Propulsive Phase in Strength Assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; García-Ramos, A.; Jiménez-Reyes, P. Load–velocity profiling in the military press exercise: Effects of gender and training. Int. J. Sports Sci. Coach. 2018, 13, 743–750. [Google Scholar] [CrossRef]
- Lake, J.; Naworynsky, D.; Duncan, F.; Jackson, M. Comparison of Different Minimal Velocity Thresholds to Establish Deadlift One Repetition Maximum. Sports 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- de Hoyo, M.; Núñez, F.J.; Sañudo, B.; Gonzalo-Skok, O.; Muñoz-López, A.; Romero-Boza, S.; Otero-Esquina, C.; Sánchez, H.; Nimphius, S. Predicting Loading Intensity Measuring Velocity in Barbell Hip Thrust Exercise. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Gonzalez-Badillo, J.J.; Perez, C.E.; Pallares, J.G. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int. J. Sports Med. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Benavides-Ubric, A.; Díez-Fernández, D.M.; Rodríguez-Pérez, M.A.; Ortega-Becerra, M.; Pareja-Blanco, F. Analysis of the Load-Velocity Relationship in Deadlift Exercise. J. Sport. Sci. Med. 2020, 19, 452–459. [Google Scholar]
- Garcia-Ramos, A.; Jukic, I.; Weakley, J.; Janicijevic, D. Bench press one-repetition maximum estimation through the individualised load-velocity relationship: Comparison of different regression models and minimal velocity thresholds. Int. J. Sport Physiol. Perform. 2021. [Google Scholar] [CrossRef]
- Zourdos, M.C.; Klemp, A.; Dolan, C.; Quiles, J.M.; Schau, K.A.; Jo, E.; Helms, E.; Esgro, B.; Duncan, S.; Garcia Merino, S.; et al. Novel Resistance Training–Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J. Strength Cond. Res. 2016, 30, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Naclerio, F.; Larumbe-Zabala, E. Relative Load Prediction by Velocity and the Omni-Res 0-10 Scale in Parallel Squat. J. Strength Cond. Res. 2017, 31, 1585–1591. [Google Scholar] [CrossRef]
- Helms, E.R.; Storey, A.; Cross, M.R.; Brown, S.R.; Lenetsky, S.; Ramsay, H.; Dillen, C.; Zourdos, M.C. RPE and Velocity Relationships for the Back Squat, Bench Press, and Deadlift in Powerlifters. J. Strength Cond. Res. 2017, 31, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Varela-Olalla, D.; del Campo-Vecino, J.; Leyton-Román, M.; Pérez-Castilla, A.; Balsalobre-Fernández, C. Rating of perceived exertion and velocity loss as variables for controlling the level of effort in the bench press exercise. Sport. Biomech. 2019, 1–15. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Muñoz-López, M.; Marchante, D.; García-Ramos, A. Repetitions in Reserve and Rate of Perceived Exertion Increase the Prediction Capabilities of the Load-Velocity Relationship. J. Strength Cond. Res. 2021, 35, 724–730. [Google Scholar] [CrossRef]
- Arede, J.; Vaz, R.; Gonzalo-Skok, O.; Balsalobre-Fernandéz, C.; Varela-Olalla, D.; Madruga-Parera, M.; Leite, N. Repetitions in reserve vs. maximum effort resistance training programs in youth female athletes. J. Sports Med. Phys. Fitness 2020, 60, 1231–1239. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Gorostiaga, E.M.; Pareja-Blanco, F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur. J. Sport Sci. 2014, 14, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Nosaka, K.; Vernon, A.D.; Haff, G.G. The Reliability of Individualized Load–Velocity Profiles. Int. J. Sports Physiol. Perform. 2018, 13, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sport. Biomech. 2019, 18, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Pestaña-Melero, F.L.; Haff, G.G.; Rojas, F.J.; Pérez-Castilla, A.; García-Ramos, A. Reliability of the Load–Velocity Relationship Obtained Through Linear and Polynomial Regression Models to Predict the 1-Repetition Maximum Load. J. Appl. Biomech. 2018, 34, 184–190. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Barboza-González, P.; Ulloa-Díaz, D.; Rodriguez-Perea, A.; Martinez-Garcia, D.; Guede-Rojas, F.; Hinojosa-Riveros, H.; Chirosa-Ríos, L.J.; Cuevas-Aburto, J.; Janicijevic, D.; et al. Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. J. Sports Sci. 2019, 37, 2205–2212. [Google Scholar] [CrossRef]
- Larsen, S.; Kristiansen, E.; van den Tillaar, R. Effects of subjective and objective autoregulation methods for intensity and volume on enhancing maximal strength during resistance-training interventions: A systematic review. PeerJ 2021, 9, e10663. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Alcazar, J.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; Rodriguez-Lopez, C.; Hidalgo-de Mora, J.; Sánchez-Moreno, M.; Bachero-Mena, B.; Alegre, L.M.; Ortega-Becerra, M. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand. J. Med. Sci. Sports 2020, 30, 2154–2166. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training. Med. Sci. Sport. Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Schoenfeld, B.J. Higher effort, rather than higher load, for resistance exercise-induced activation of muscle fibres. J. Physiol. 2019, 597, 4691–4692. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy. Med. Sci. Sport. Exerc. 2018, 51, 94–103. [Google Scholar] [CrossRef]
- Pérez Castilla, A.; García Ramos, A. Changes in the load-velocity profile following power-and strength-oriented resistance training programs. Int. J. Sport Physiol. Perform. 2020, 15, 1460–1466. [Google Scholar] [CrossRef]
- Ward, P.; Coutts, A.J.; Pruna, R.; McCall, A. Putting the ‘i’ Back in Team. Int. J. Sports Physiol. Perform. 2018, 13, 1107–1111. [Google Scholar] [CrossRef]
Session 1 | Session 2 | Session 3 | Session 4 | Session 5 | Session 6 | Session 7 | Session 8 | |
---|---|---|---|---|---|---|---|---|
1RM (kg) | 130 | --- | --- | --- | --- | --- | --- | --- |
Load @ 70%1RM (kg) | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 |
Actual daily 1RM | 130 | 132.5 | 130 | 135 | 137.5 | 132.5 | 135 | 140 |
Load @ 70% 1RM (kg) | 91 | 92.75 | 91 | 94.5 | 96.25 | 92.75 | 94.5 | 98 |
Load (% 1RM) | ||||
---|---|---|---|---|
40% | 1.03 | 1.21 | 1 | 0.93 |
45% | 0.96 | 1.14 | 0.94 | 0.88 |
50% | 0.89 | 1.06 | 0.87 | 0.83 |
55% | 0.82 | 0.99 | 0.81 | 0.79 |
60% | 0.75 | 0.91 | 0.75 | 0.75 |
65 % | 0.66 | 0.84 | 0.69 | 0.7 |
70% | 0.60 | 0.77 | 0.62 | 0.65 |
75% | 0.53 | 0.69 | 0.56 | 0.60 |
80% | 0.46 | 0.62 | 0.5 | 0.56 |
85% | 0.38 | 0.54 | 0.44 | 0.51 |
90% | 0.31 | 0.47 | 0.37 | 0.47 |
95% | 0.24 | 0.39 | 0.31 | 0.43 |
100% | 0.17 | 0.32 | 0.25 | 0.38 |
1 | Loads selection: Select 4–6 incremental loads, using velocity as a reference, starting approximately @ 30–40% 1RM (>1.15–1.20 m·s−1) and until approximately @ 75–80% 1RM (≈0.55–0.45 m·s−1), or higher, if needed. |
2 | Set (0): Warm-up @ 20–30% RM. If %RM is unknown, use an easy load or a load that can be lifted approximately @ >1.20–1.25 m·s−1. This set can be used to adjust the 1st load for the incremental test. |
3 | Set 1–4/6: Athlete performs 2 reps with each load (1 rep when using heavier loads is allowed), pushing the barbell as fast as possible. The fastest repetition is the one used for the calculations. When measuring only the concentric phase, a brief 1–2 s barbell stop on the chest is needed. Rest ≈2–3 min between sets, ideally passively. Other interspersed exercises can be performed, but these should not involve upper body or fatigue. |
4 | Load increment between sets: Ideally, the load should be increased similarly (for example, by adding 5 or 10 kg in each new set, or a similar velocity lose), or a proportional decrease in velocity (≈0.10 m·s−1). |
5 | Assessing progression: After a training cycle, velocity is re-measured with the absolute loads used in the first incremental test. As an alternative, practitioners could: (i) select an absolute load (mass) and assess the change in velocity for that particular load, and/or (ii) measure at a certain velocity, and see with which load is used compared to the start of the cycle. |
Notes | |
|
Exercise | Load (kg) | Sets | Repetitions |
---|---|---|---|
Bench-press | 80 # | 3 | 6 (Until a 20% of velocity loss was achieved) |
Back squat | 100 # | 3 | 5 (Until a 20% of velocity loss was achieved) |
Pendlay row * | 80 | 3 | 6 (RIR 2) |
Hip thrust * | 120 | 3 | 5 (RIR 3) |
Shoulder press * | 50 | 3 | 6 (RIR 2) |
Leg press * | 160 | 3 | 5 (RIR4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balsalobre-Fernández, C.; Torres-Ronda, L. The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges. Sports 2021, 9, 47. https://doi.org/10.3390/sports9040047
Balsalobre-Fernández C, Torres-Ronda L. The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges. Sports. 2021; 9(4):47. https://doi.org/10.3390/sports9040047
Chicago/Turabian StyleBalsalobre-Fernández, Carlos, and Lorena Torres-Ronda. 2021. "The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges" Sports 9, no. 4: 47. https://doi.org/10.3390/sports9040047
APA StyleBalsalobre-Fernández, C., & Torres-Ronda, L. (2021). The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges. Sports, 9(4), 47. https://doi.org/10.3390/sports9040047