Cyclic Creep Behavior and Modified Life Prediction of Bainite 2.25Cr-1Mo Steel at 455 °C
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cyclic Creep Behavior
3.2. Fracture Mode
3.3. Anelastic Recovery Response
3.3.1. Strain Classification
3.3.2. Effect of Unloading Rate
3.3.3. Effect of Duration under Valley Stress
3.4. Modified Life Prediction Considering Anelastic Recovery
4. Conclusions
- (1)
- Longer endurance life was obtained under cyclic creep compared with the static creep life, which was attributed to the effect of anelastic recovery. A consistent ductile fracture mode was observed under static and cyclic creep loadings, however, the ductility of the specimen that failed after cyclic creep was slightly lower than that after static creep.
- (2)
- The unloading elastic modulus varied with different unloading rates. The anelastic recovery strain during the unloading period showed dependence on both the unloading rate and valley stress duration. Based on the strain classification, the evolutions of the two parts of the anelastic recovery strain with the entire life under different unloading conditions can be divided into distinct stages.
- (3)
- The unrecoverable strain which referred to the true damage parameter was systematically considered by the classified strain components. Moreover, a modified life prediction method considering anelastic recovery was proposed, which presented extremely satisfactory estimated results for cyclic creep under various conditions.
Author Contributions
Funding
Conflicts of Interest
References
- Okrajni, J.; Cie, M.; Swad, L. High-temperature low-cycle fatigue and creep behaviour of nickel-based superalloys with heat-resistant coatings. Fatigue Fract. Eng. Mater. Struct. 1998, 21, 947–954. [Google Scholar] [CrossRef]
- Liao, C.-C.; Wang, C.-C.; Chen, T.-C.; Shiue, R.-K.; Tsay, L.-W. Effects of Thermal Simulation on the Creep Fracture of the Mod. 9Cr-1Mo Weld Metal. Metals 2020, 10, 1181. [Google Scholar] [CrossRef]
- Kuběna, I.; Polák, J.; Płociński, T.P.; Hébert, C.; Škorík, V.; Kruml, T. Microstructural stability of ODS steels in cyclic loading. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 936–947. [Google Scholar] [CrossRef]
- Natesan, E.; Ahlström, J.; Manchili, S.K.; Eriksson, S.; Persson, C. Effect of Strain Rate on the Deformation Behaviour of A356-T7 Cast Aluminium Alloys at Elevated Temperatures. Metals 2020, 10, 1239. [Google Scholar] [CrossRef]
- Zhan, N.; Hu, Z.; Zhang, X. Experimental Investigation of Fatigue Crack Growth Behavior in Banded Structure of Pipeline Steel. Metals 2020, 10, 1193. [Google Scholar] [CrossRef]
- Barua, B.; Mohanty, S.; Listwan, J.T.; Majumdar, S.; Natesan, K.; Majumdar, S. Methodology for Stress-Controlled Fatigue Test Under In-Air and Pressurized Water Reactor Coolant Water Condition and to Evaluate the Effect of Pressurized Water Reactor Water and Loading Rate on Ratcheting. J. Press. Vessel Technol. 2018, 140, 031403. [Google Scholar] [CrossRef] [Green Version]
- Oldroyd, P.W.J.; Radon, J.C. Reversal of cyclic creep in mild steel and copper. Fatigue Fract. Eng. Mater. Struct. 1979, 1, 297–306. [Google Scholar] [CrossRef]
- Ahmadzadeh, G.R.; Varvani-Farahani, A. Concurrent ratcheting-fatigue damage analysis of uniaxially loaded A-516 Gr.70 and 42CrMo Steels. Fatigue Fract. Eng. Mater. Struct. 2012, 35, 962–970. [Google Scholar] [CrossRef]
- Tian, J.; Li, J.; Xie, H.; Yang, Y.; Kan, Q. Finite Element Implementation of a Temperature-Dependent Cyclic Plastic Model for SA508-3 Steel. Metals 2018, 8, 955. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Xuan, F.-Z. Ratchetting behavior of advanced 9–12% chromium ferrite steel under creep–fatigue loadings: Fracture modes and dislocation patterns. Mater. Sci. Eng. A 2012, 539, 301–307. [Google Scholar] [CrossRef]
- Zhao, P.; Xuan, F.-Z. Ratchetting behavior of advanced 9–12% chromium ferrite steel under creep-fatigue loadings. Mech. Mater. 2011, 43, 299–312. [Google Scholar] [CrossRef]
- Hu, D.; Ma, Q.; Shang, L.; Gao, Y.; Wang, R. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling. Mater. Sci. Eng. A 2016, 670, 17–25. [Google Scholar] [CrossRef]
- Matejczyk, D.E.; Zhuang, Y.; Tien, J.K. Anelastic relaxation controlled cyclic creep and cyclic stress rupture behavior of an oxide dispersion strengthened alloy. Met. Mater. Trans. A 1983, 14, 241–247. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Q.; Jiang, Y.; Rao, G.; Miao, G.; He, W.; Nie, X. The effect of cyclic loading on the creep fatigue life and creep strength of a DS superalloy: Damage mechanism and life modeling. Int. J. Fatigue 2020, 134, 105452. [Google Scholar] [CrossRef]
- Hong, K.T.; Lee, J.K.; Nam, S.W. Threshold stress for cyclic creep acceleration in copper. J. Mater. Sci. 1988, 23, 1569–1572. [Google Scholar] [CrossRef]
- Yasnii, P.V.; Halushchak, M.P.; Fedak, S.I.; Pidkol’Zin, V.Y. Cyclic creep of AMg6 alloy. Mater. Sci. 2000, 36, 48–53. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Rahka, K.; Laird, C. Cyclic creep acceleration and retardation in Cr-Mo-V rotor steel at ambient and elevated temperature respectively. Fatigue Fract. Eng. Mater. Struct. 1986, 9, 219–230. [Google Scholar] [CrossRef]
- Bönisch, M.; Calin, M.; Van Humbeeck, J.V.; Skrotzki, W.; Eckert, J. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti–Nb alloys. Mater. Sci. Eng. C 2015, 48, 511–520. [Google Scholar] [CrossRef]
- Blum, W.; Dvořák, J.; Král, P.; Eisenlohr, P.; Sklenička, V. Strain Rate Contribution due to Dynamic Recovery of Ultrafine-Grained Cu–Zr as Evidenced by Load Reductions during Quasi-Stationary Deformation at 0.5 Tm. Metals 2019, 9, 1150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-L.; Xuan, F.Z.; Guo, S.-J.; Zhao, P. The role of anelastic recovery in the creep-fatigue interaction of 9–12% Cr steel at high temperature. Int. J. Mech. Sci. 2017, 122, 95–103. [Google Scholar] [CrossRef]
- Hosseini, E.; Kalyanasundaram, V.; Li, X.; Holdsworth, S.R. Effect of prior deformation on the subsequent creep and anelastic recovery behaviour of an advanced martensitic steel. Mater. Sci. Eng. A 2018, 717, 68–77. [Google Scholar] [CrossRef]
- Na, H.-S.; Lee, S.-H.; Kang, C.-Y. Effect of Micro-Segregation on Impact Toughness of 2.25Cr-1Mo Steel after Post Weld Heat Treatment. Metals 2018, 8, 373. [Google Scholar] [CrossRef] [Green Version]
- Klueh, R.L. Heat treatment effects on creep and rupture behavior of annealed 2.25 Cr-1 Mo steel. Met. Mater. Trans. A 1978, 9, 1591–1598. [Google Scholar] [CrossRef]
- Jaske, C.E. Fatigue curve needs for higher strength 2-1/4Cr-1Mo steel for petroleum process vessels. J. Press. Vessel Technol. 1990, 112, 323–332. [Google Scholar] [CrossRef]
- Challenger, K.D.; Miller, A.K.; Brinkman, C.R. An explanation for the effects of hold periods on the elevated temperature fatigue behavior of 2 1/4 Cr-1 Mo Steel. J. Eng. Mater. Technol. 1981, 103, 7–14. [Google Scholar] [CrossRef]
- Callaghan, M.D.; Humphries, S.R.; Law, M.; Ho, M.; Bendeich, P.; Li, H.; Yeung, W.Y. Energy-based approach for the evaluation of low cycle fatigue behaviour of 2.25Cr–1Mo steel at elevated temperature. Mater. Sci. Eng. A 2010, 527, 5619–5623. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, D.; Zhao, Z.; Zhang, Z.; Chen, G.; Chen, X. Low cycle fatigue of 2.25Cr1Mo steel with tensile and compressed hold loading at elevated temperature. Mater. Sci. Eng. A 2016, 667, 251–260. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, D.; Chen, G.; Chen, X. Ratcheting-fatigue behaviour of bainite 2.25Cr1MoV steel with tensile and compressed hold loading at 455°C. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1937–1949. [Google Scholar] [CrossRef]
- Kim, W.-G.; Park, J.-Y.; Ekaputra, I.M.W.; Kim, S.-J.; Jang, J. Cyclic creep behaviour under tension–tension loading cycles with hold time of modified 9Cr–1Mo steel. Mater. High Temp. 2014, 31, 249–257. [Google Scholar] [CrossRef]
- Fischer, T.; Kuhn, B. Influence of steam atmosphere on the crack propagation behavior of a 9–12% Cr ferritic/martensitic steel at temperatures from 300 °C to 600 °C depending on frequency and hold time. Int. J. Fatigue 2019, 119, 62–77. [Google Scholar] [CrossRef]
- Fischer, T.; Kuhn, B. Impact of frequency, hold time and atmosphere on creep-fatigue of a 9–12% Cr steel from 300 °C−600 °C. Int. J. Fatigue 2019, 124, 288–302. [Google Scholar] [CrossRef]
- Chen, M.-S.; Lin, Y.C.; Li, K.-K.; Chen, J. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: A new elasto-viscoplastic constitutive model. Appl. Phys. A 2016, 122, 869. [Google Scholar] [CrossRef]
- Chen, M.-S.; Lin, Y.-C.; Li, K.-K.; Chen, J. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: A unified elasto-viscoplastic constitutive model. Appl. Phys. A 2016, 122, 854. [Google Scholar] [CrossRef]
- Kim, H.; Kim, C.; Barlat, F.; Pavlina, E.; Lee, M.-G. Nonlinear elastic behaviors of low and high strength steels in unloading and reloading. Mater. Sci. Eng. A 2013, 562, 161–171. [Google Scholar] [CrossRef]
- Zheng, X.-T.; Xuan, F.-Z.; Zhao, P. Ratcheting-creep interaction of advanced 9–12% chromium ferrite steel with anelastic effect. Int. J. Fatigue 2011, 33, 1286–1291. [Google Scholar] [CrossRef]
- Yang, M.; Akiyama, Y.; Sasaki, T. Evaluation of change in material properties due to plastic deformation. J. Mater. Process. Technol. 2004, 151, 232–236. [Google Scholar] [CrossRef]
- Stefani, J.A.; Nardone, V.C.; Tien, J.K. On the refinement of the anelastic relaxation controlled cyclic creep model. Scr. Met. 1986, 20, 685–688. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, K.; Wang, W.; Yu, J.; Xu, J.; Ma, L. Low cycle fatigue and ratcheting behavior of 35CrMo structural steel at elevated temperature. Nucl. Eng. Des. 2017, 314, 285–292. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.; Gao, J.; Ma, L.; Yu, J.; Xu, J. Rate-dependent low cycle fatigue and ratcheting of 25Cr2MoVA steel under cyclic pulsating tension. Mater. High Temp. 2017, 35, 482–489. [Google Scholar] [CrossRef]
- Mareau, C.; Favier, V.; Weber, B.; Galtier, A.; Berveiller, M. Micromechanical modeling of the interactions between the microstructure and the dissipative deformation mechanisms in steels under cyclic loading. Int. J. Plast. 2012, 32–33, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.G. Anelasticity and creep transients in an austenitic steel. J. Mater. Sci. 1978, 13, 1849–1854. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, X.; Chen, L.; Jiang, J. Fatigue–creep behavior of 1.25Cr0.5Mo steel at high temperature and its life prediction. Int. J. Fatigue 2007, 29, 1174–1183. [Google Scholar] [CrossRef]
- Zhu, Y.; Kang, G.; Yu, C. A finite cyclic elasto-plastic constitutive model to improve the description of cyclic stress-strain hysteresis loops. Int. J. Plast. 2017, 95, 191–215. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|---|
0.15 | 0.05 | 0.48 | 0.006 | 0.002 | 2.42 | 0.96 | 0.08 | Bal. |
T (°C) | (%) | (%) | ||
---|---|---|---|---|
25 | 525 | 620 | 17.4 | 79.62 |
455 | 429 | 489 | 13 | 80.95 |
Test Type | Endurance Life (h) | Cycles to Failure () | ||||
---|---|---|---|---|---|---|
Static creep | 12 | infinite | - | - | 37.2 | - |
Cyclic creep | 12 | 60 | 0.6 | 0 | 106.2 | 107 |
12 | 0 | 150.1 | 150 | |||
19 | 0 | 247.1 | 246 | |||
39 | 0 | 274.1 | 274 | |||
12 | 10 | 206.2 | 207 | |||
12 | 30 | 293.6 | 294 |
0.6 | 0 | 0.02289 | 107 |
12 | 0 | 0.02012 | 150 |
19 | 0 | 0.01 | 246 |
39 | 0 | 0.00581 | 274 |
12 | 10 | 0.01043 | 207 |
12 | 30 | 0.00462 | 294 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Ogunmola, O.; Zhao, Z.; Li, B.; Chen, X. Cyclic Creep Behavior and Modified Life Prediction of Bainite 2.25Cr-1Mo Steel at 455 °C. Metals 2020, 10, 1486. https://doi.org/10.3390/met10111486
Jiang H, Ogunmola O, Zhao Z, Li B, Chen X. Cyclic Creep Behavior and Modified Life Prediction of Bainite 2.25Cr-1Mo Steel at 455 °C. Metals. 2020; 10(11):1486. https://doi.org/10.3390/met10111486
Chicago/Turabian StyleJiang, Hao, Oluwadamilola Ogunmola, Zizhen Zhao, Bingbing Li, and Xu Chen. 2020. "Cyclic Creep Behavior and Modified Life Prediction of Bainite 2.25Cr-1Mo Steel at 455 °C" Metals 10, no. 11: 1486. https://doi.org/10.3390/met10111486
APA StyleJiang, H., Ogunmola, O., Zhao, Z., Li, B., & Chen, X. (2020). Cyclic Creep Behavior and Modified Life Prediction of Bainite 2.25Cr-1Mo Steel at 455 °C. Metals, 10(11), 1486. https://doi.org/10.3390/met10111486