Biocompatibility and Cellular Behavior of TiNbTa Alloy with Adapted Rigidity for the Replacement of Bone Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development and Mechanical Characterization of the TiNbTa Potential Prosthetic Biomaterial
2.2. In Vitro Cell Experiments
2.3. Cell Culture
2.4. Cell Viability and Proliferation Assay
2.5. Cell Differentiation by Alkaline Phosphatase (ALP) Evaluation
2.6. Cell Morphology
2.7. Statistical Analysis
3. Results and Discussion
3.1. Mechanical Behavior of the TiNbTa Potential Prosthetic Biomaterial and Comparison with Actual Biomaterials
3.2. Biocompatibility of the TiNbTa Potential Prosthetic Biomaterial
4. Conclusions
- It is possible to obtain a similar Young’s modulus and higher yield strength than those of the cortical bone tissue through the development of TiNbTa foams and Ti c.p. foams. These interesting properties are even better for the TiNbTa foams in comparison with the Ti c.p. foams;
- In particular, regarding the σy/E index, the TiNbTa_20 and TiNbTa_30, corresponding to TiNbTa foams with volumetric porosity values of 20 and 30%, respectively, appear to present the optimal potential prosthetic biomaterials for cortical bone replacements (higher index). They also displayed interesting values of E = 25.5 GPa and 17.7 GPa, and σy = 976 Mpa and 685 MPa, respectively. In addition, the high yield strengths help to prevent any plastic deformation for a hypothetical implant fabricated by this material;
- In turn, the mechanical behavior for cancellous bone tissue (E less than 1 GPa and σy = 9 MPa) could also be reached by the TiNbTa foams with an 80 volumetric percentage of porosity (E = 1 GPa and σy = 40 MPa), However, the high porosity makes its manufacture less feasible;
- In vitro tests show the successful adhesion, proliferation, and differentiation of osteoblasts (MC3T3 cell line), thereby confirming the biocompatibility and non-toxicity of TiNbTa samples;
- On the other hand, osteoblasts cultured in the TiNbTa samples showed the same metabolic and alkaline phosphate activity as those cultured in the Ti c.p. samples. Therefore, TiNbTa samples show a bio-functional behavior balance, which promotes in vitro osseointegration and solves the stress-shielding phenomenon.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holzapfel, B.M.; Reichert, J.C.; Schantz, J.-T.; Gbureck, U.; Rackwitz, L.; Nöth, U.; Jakob, F.; Rudert, M.; Groll, J.; Hutmacher, D.W. How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 2013, 65, 581–603. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New developments of ti-based alloys for biomedical applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Zhang, L.C.; Chen, L.Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef] [Green Version]
- Rho, J.Y.; Ashman, R.B.; Turner, C.H. Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J. Biomech. 1993, 26, 111–119. [Google Scholar] [CrossRef]
- Muñoz, S.; Castillo, S.M.; Torres, Y. Different models for simulation of mechanical behaviour of porous materials. J. Mech. Behav. Biomed. Mater. 2018, 80, 88–96. [Google Scholar] [CrossRef]
- Kourtis, S.; Damanaki, M.; Kaitatzidou, S.; Kaitatzidou, A.; Roussou, V. Loosening of the fixing screw in single implant crowns: Predisposing factors, prevention and treatment options. J. Esthet. Restor. Dent. 2017, 29, 233–246. [Google Scholar] [CrossRef]
- Trueba, P.; Chicardi, E.; Rodríguez-Ortiz, J.A.; Torres, Y. Development and implementation of a sequential compaction device to obtain radial graded porosity cylinders. J. Manuf. Process. 2020, 50, 142–153. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef]
- Zhou, L.; Yuan, T.; Tang, J.; He, J.; Li, R. Mechanical and corrosion behavior of titanium alloys additively manufactured by selective laser melting—A comparison between nearly β titanium, α titanium and α + β titanium. Opt. Laser Technol. 2019, 119, 105625. [Google Scholar] [CrossRef]
- Pilliar, R.M. Metallic biomaterials. In Biomedical Materials; Springer: Boston, MA, USA, 2009; pp. 41–81. [Google Scholar]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Biesiekierski, A.; Wang, J.; Abdel-Hady Gepreel, M.; Wen, C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012, 8, 1661–1669. [Google Scholar] [CrossRef]
- Cui, C.; Hu, B.M.; Zhao, L.; Liu, S. Titanium alloy production technology, market prospects and industry development. Mater. Des. 2010, 32, 1684–1691. [Google Scholar] [CrossRef]
- Kim, E.S.; Jeong, Y.H.; Choe, H.C.; Brantley, W.A. Formation of titanium dioxide nanotubes on Ti-30Nb-xTa alloys by anodizing. Thin Solid Film. 2013, 549, 141–146. [Google Scholar] [CrossRef]
- Schmidt, R.; Pilz, S.; Lindemann, I.; Damm, C.; Hufenbach, J.; Helth, A.; Geissler, D.; Henss, A.; Rohnke, M.; Calin, M.; et al. Powder metallurgical processing of low modulus β-type Ti-45Nb to bulk and macro-porous compacts. Powder Technol. 2017, 322, 393–401. [Google Scholar] [CrossRef]
- Chicardi, E.; Aguilar, C.; Sayagués, M.J.; García-Garrido, C. Influence of the Mn content on the TiNbxMn alloys with a novel fcc structure. J. Alloys Compd. 2018, 746, 601–610. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Y.; Jiang, Y.; Zhou, R. Corrosion behavior of Ti-35Nb-7Zr-5Ta alloy prepared by spark plasma sintering in Hank’s artificial body fluid. Corros. Sci. Prot. Technol. 2016, 28, 543–548. [Google Scholar]
- Stráský, J.; Harcuba, P.; Václavová, K.; Horváth, K.; Landa, M.; Srba, O.; Janeček, M. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J. Mech. Behav. Biomed. Mater. 2017, 71, 329–336. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, Q.; Guo, S.; Zhao, X. α′ Type Ti–Nb–Zr alloys with ultra-low Young’s modulus and high strength. Prog. Nat. Sci. Mater. Int. 2013, 23, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Zhentao, Y.; Lian, Z. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM. Mater. Sci. Eng. A 2006, 438–440, 391–394. [Google Scholar] [CrossRef]
- Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys. J. Alloys Compd. 2019, 792, 684–693. [Google Scholar] [CrossRef]
- Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Mater. Des. 2019, 181, 108064. [Google Scholar] [CrossRef]
- Samuel, S.; Nag, S.; Nasrazadani, S.; Ukirde, V.; El Bouanani, M.; Mohandas, A.; Nguyen, K.; Banerjee, R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J. Biomed. Mater. Res. 2010, 94, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, K. Review on titanium and titanium-based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Chicardi, E.; Gutiérrez-González, C.F.; Sayagués, M.J.; García-Garrido, C. Development of a novel TiNbTa material potentially suitable for bone replacement implants. Mater. Des. 2018, 145, 88–96. [Google Scholar] [CrossRef]
- García-Garrido, C.; Gutiérrez-González, C.; Torrecillas, R.; Pérez-Pozo, L.; Salvo, C.; Chicardi, E. Manufacturing optimisation of an original nanostructured (beta + gamma)-TiNbTa material. J. Mater. Res. Technol. 2019, 8, 2573–2585. [Google Scholar] [CrossRef]
- Hussein, A.H.; Gepreel, M.A.H.; Gouda, M.K.; Hefnawy, A.M.; Kandil, S.H. Biocompatibility of new Ti-Nb-Ta base alloys. Mater. Sci. Eng. C 2016, 61, 574–578. [Google Scholar] [CrossRef]
- Mondal, D.P.; Ramakrishnan, N.; Suresh, K.S.; Das, S. On the moduli of closed-cell aluminum foam. Scr. Mater. 2007, 57, 929–932. [Google Scholar] [CrossRef]
- Zhang, L.C.; Klemm, D.; Eckert, J.; Hao, Y.L.; Sercombre, T.B. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr. Mater. 2011, 65, 21–24. [Google Scholar] [CrossRef]
- Currey, J.D. Bone and Natural Composites: Properties. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 776–781. [Google Scholar]
- Donato, T.A.; de Almeida, L.H.; Nogueira, R.A.; Niemeyer, T.C.; Grandini, C.R.; Caram, R.; Schneider, S.G.; Santos, A.R., Jr. Cytotoxicity study of some Ti alloys used as biomaterial. Mater. Sci. Eng. C 2009, 29, 1365–1369. [Google Scholar] [CrossRef]
- Cremasco, A.; Messias, A.D.; Esposito, A.R.; Duek, E.A.D.R.; Caram, R. Effects of alloying elements on the cytotoxic response of titanium alloys. Mater. Sci. Eng. C 2011, 31, 833–839. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zheng, Y.F. Corrosion behaviour and biocompatibility evaluation of low modulus Ti-16Nb shape memory alloy as potential biomaterial. Mater. Lett. 2009, 63, 1293–1295. [Google Scholar] [CrossRef]
- Li, Y.; Wong, C.; Xiong, J.; Hodgson, P.; Wen, C. Cytotoxicity of titanium and titanium alloying elements. J. Dent. Res. 2010, 89, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, Y.; Gotoh, E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005, 26, 11–21. [Google Scholar] [CrossRef]
- Lamolle, S.F.; Monjo, M.; Lyngstadaas, S.P.; Ellingsen, J.E.; Haugen, H.J. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and in vivo performance. J. Biomed. Mater. Res.-Part A 2009, 88, 581–588. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Li, Q.; Ye, L.; Gan, H.; Liu, Y.; Wang, H.; Wang, Z. Biocompatibility and osteogenic properties of porous tantalum. Exp. Ther. Med. 2015, 9, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Shimko, D.A.; Shimko, V.F.; Sander, E.A.; Dickson, K.F.; Nauman, E.A. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2005, 73, 315–324. [Google Scholar] [CrossRef]
- Li, L.J.; Kim, S.N.; Cho, S.A. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: Modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces. J. Adv. Prosthodont. 2016, 8, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Owen, T.A.; Aronow, M.; Shalhoub, V.; Barone, L.M.; Wilming, L.; Tassinari, M.S.; Kennedy, M.B.; Pockwinse, S.; Lian, J.B.; Stein, G.S. Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 1990, 143, 420–430. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Swarnkar, G.; Sharan, K.; Chakravarti, B.; Sharma, G.; Rawat, P.; Kumar, M.; Khan, F.M.; Pierroz, D.; Maurya, R.; et al. 8,8″-Biapigeninyl stimulates osteoblast functions and inhibits osteoclast and adipocyte functions: Osteoprotective action of 8,8″-biapigeninyl in ovariectomized mice. Mol. Cell. Endocrinol. 2010, 323, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Martín González, A.; Allo Miguel, G.; Aramendi Ramos, M.; Librizzi, S.; Jiménez, C.; Hawkins, F.; Martínez Díaz-Guerra, G. Different development of serum sclerostin compared to other bone remodeling markers in the first year after a liver transplant. Rev. Osteoporos. Metab. Miner. 2019, 11, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Boyan, B.D.; Hummert, T.W.; Dean, D.D.; Schwartz, Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996, 17, 137–146. [Google Scholar] [CrossRef]
- Jo, S.; Han, J.; Lee, Y.L.; Yoon, S.; Lee, J.; Wang, S.E.; Kim, T.H. Regulation of osteoblasts by alkaline phosphatase in ankylosing spondylitis. Int. J. Rheum. Dis. 2019, 22, 252–261. [Google Scholar] [CrossRef] [PubMed]
Specimen | Total Porosity (p,%) | E (GPa) | σy (MPa) |
---|---|---|---|
TiNbTa_0 | 0 | 48.0 | 1860 |
TiNbTa_10 | 10 | 35.0 | 1357 |
TiNbTa_20 | 20 | 25.2 | 976 |
TiNbTa_30 | 30 | 17.7 | 685 |
TiNbTa_40 | 40 | 12.0 | 465 |
TiNbTa_50 | 50 | 7.7 | 300 |
TiNbTa_60 | 60 | 4.6 | 179 |
TiNbTa_70 | 70 | 2.4 | 95 |
TiNbTa_80 | 80 | 1.0 | 40 |
TiNbTa_90 | 90 | 0.2 | 9 |
Ti_60a | 57 | 8.1 | 16 |
Ti_70a | 64 | 3.5 | 42 |
Ti_30b | 28 | 15.9 | 389 |
Ti_40b | 38 | 5.8 | 272 |
Ti_50b | 45 | 8.5 | 192 |
Ti_60b | 55 | 3.7 | 112 |
Ti_70b | 63 | 4.6 | 57 |
Ti c.p. | 0 | 105 | 480 |
Ti6Al4V | 0 | 110 | 870 |
Cortical bone tissue | ~0 | [15–25] | [80–200] * |
Cancellous bone tissue | >30 | <1 | [1,2,3,4,5,6,7,8,9] * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giner, M.; Chicardi, E.; Costa, A.d.F.; Santana, L.; Vázquez-Gámez, M.Á.; García-Garrido, C.; Colmenero, M.A.; Olmo-Montes, F.J.; Torres, Y.; Montoya-García, M.J. Biocompatibility and Cellular Behavior of TiNbTa Alloy with Adapted Rigidity for the Replacement of Bone Tissue. Metals 2021, 11, 130. https://doi.org/10.3390/met11010130
Giner M, Chicardi E, Costa AdF, Santana L, Vázquez-Gámez MÁ, García-Garrido C, Colmenero MA, Olmo-Montes FJ, Torres Y, Montoya-García MJ. Biocompatibility and Cellular Behavior of TiNbTa Alloy with Adapted Rigidity for the Replacement of Bone Tissue. Metals. 2021; 11(1):130. https://doi.org/10.3390/met11010130
Chicago/Turabian StyleGiner, Mercè, Ernesto Chicardi, Alzenira de Fátima Costa, Laura Santana, María Ángeles Vázquez-Gámez, Cristina García-Garrido, Miguel Angel Colmenero, Francisco Jesús Olmo-Montes, Yadir Torres, and María José Montoya-García. 2021. "Biocompatibility and Cellular Behavior of TiNbTa Alloy with Adapted Rigidity for the Replacement of Bone Tissue" Metals 11, no. 1: 130. https://doi.org/10.3390/met11010130
APA StyleGiner, M., Chicardi, E., Costa, A. d. F., Santana, L., Vázquez-Gámez, M. Á., García-Garrido, C., Colmenero, M. A., Olmo-Montes, F. J., Torres, Y., & Montoya-García, M. J. (2021). Biocompatibility and Cellular Behavior of TiNbTa Alloy with Adapted Rigidity for the Replacement of Bone Tissue. Metals, 11(1), 130. https://doi.org/10.3390/met11010130