Manipulating Nucleation Potency of Substrates by Interfacial Segregation: An Overview
Abstract
:1. Introduction
2. Interfacial Segregation
2.1. Gibbs Adsorption Isotherm
2.2. Segregation at Liquid/Substrate Interface
2.3. Approaches to Study of Interfacial Segregation
2.3.1. TEM/STEM Sample Preparation
2.3.2. Advanced Electron Microscopy
2.3.3. Density Function Theory (DFT) Simulations
2.3.4. Casting and Assessment of Grain Structure
3. Segregation at Al/TiB2 Interface
3.1. Nature of TiB2 Particles
3.2. Al/TiB2 Interface
3.3. Ti Segregation at Al/TiB2 Interface
- (i)
- Formation of Al3Ti 2DC on the surface of TiB2 particles during the grain refiner production process, which significantly increased the potency of TiB2 for nucleation of α-Al;
- (ii)
- Sufficient numbers of added TiB2 particles which were coated with the Al3Ti 2DC layer, and suitable particle size and size distribution, which guaranteed sufficient number of grains to be initiated and grown from the nucleating TiB2 particles and achieved grain refinement;
- (iii)
- Excess Ti in the alloy melt after grain refiner addition generated growth restriction, which increased the effectiveness of the grain refiner by allowing more TiB2 particles to be active for heterogeneous nucleation, which, in turn, promoted the columnar-to-equiaxed transition.
3.4. Zr Segregation at Al/TiB2 Interface
3.5. Si Segregation at Al/TiB2 Interface
- Si interfacial segregation leads to enrichment of Si at the Al-Si melt/TiB2 interface. The higher the Si concentration in the melt, the more Si enrichment at the interface there is.
- Si segregation at the Al-Si/TiB2 melt interface makes the pre-existed Al3Ti 2DC layer unstable on the TiB2 surface, and, thus, the 2DC dissolves gradually, resulting in a greatly decreased nucleation potency for the TiB2 particles. The dissolution rate of the 2DC layer increases with increasing Si enrichment at the interface.
- The subsequence of the 2DC dissolution is a reduced total number of potent TiB2 particles available for heterogeneous nucleation and grain initiation of α-Al, and, hence, an increased grain size.
3.6. Fe Segregation at Al/TiB2 Interface
3.7. Cu Segregation at Al/TiB2 Interface
4. Segregation at Mg/MgO Interface
4.1. Nature of Native MgO Particles in Mg Alloy Melt
4.2. MgO Acting as Nucleation Substrate
4.3. Mg/MgO Interface
4.4. Y Segregation at Mg/MgO{1 1 1} Interface
4.5. Y Segregation at Mg/MgO{1 0 0} Interface
4.6. Segregation of Ca and Sn at Mg/MgO Interface
5. Segregation at Al/γ-Al2O3 Interface
5.1. Nature of γ-Al2O3
5.2. Y Segregation at Al/γ-Al2O3 Interface
5.3. La Segregation at Al/γ-Al2O3 Interface
6. General Discussions
6.1. Manipulating Nucleation Potency of Substrate
6.2. Engineering Liquid/Substrate Interface for Grain Refinement
7. Summary and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McCartney, D.G. Grain refining of aluminium and its alloys using inoculants. Int. Mater. Rev. 1989, 34, 247–260. [Google Scholar] [CrossRef]
- Murty, B.S.; Kori, S.A.; Chakraborty, M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 2002, 47, 3–47. [Google Scholar] [CrossRef]
- Easton, M.A.; Qian, M.; Prasad, A.; StJohn, D.H. Recent advances in grain refinement of light metals and alloys. Curr. Opin. Solid State Mater. Sci. 2016, 20, 13–24. [Google Scholar] [CrossRef]
- Quested, T.E. Understanding mechanisms of grain refinement of aluminium alloys by inoculation. Mater. Sci. Technol. 2004, 20, 1357–1369. [Google Scholar] [CrossRef]
- Greer, L. Overview: Application of heterogeneous nucleation in grain-refining of metals. J. Chem. Phys. 2016, 145, 211704. [Google Scholar] [CrossRef]
- StJohn, D.H.; Qian, M.; Easton, M.A.; Cao, P.; Hildebrand, Z. Grain refinement of magnesium alloys. Metall. Mater. Trans. A 2005, 36A, 1669–1679. [Google Scholar] [CrossRef]
- StJohn, D.H.; Easton, M.A.; Qian, M.; Taylor, J.A. Grain refinement of magnesium alloys: A review of recent research, theoretical developments, and their application. Metall. Mater. Trans. A 2013, 44, 2935–2949. [Google Scholar] [CrossRef]
- Fan, Z. An epitaxial model for heterogeneous nucleation on potent substrates. Metall. Mater. Trans. A 2013, 44, 1409–1418. [Google Scholar] [CrossRef]
- Jiang, B.; Men, H.; Fan, Z. Atomic ordering in the liquid adjacent to an atomically rough solid surface. Comp. Mater. Sci. 2018, 153, 73–81. [Google Scholar] [CrossRef]
- Fang, C.M.; Men, H.; Fan, Z. Effect of substrate chemistry on prenucleation. Metall. Mater. Trans. A 2018, 49, 6231–6242. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.; Thompson, G.E.; Pennycook, T.; Hashimoto, T. Grain refining mechanism in the Al/Al-Ti-B system. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Jones, G.P.; Pearson, J. Factors affecting the grain-refinement of aluminium using titanium and boron additives. Metall. Trans. B 1976, 7, 223–234. [Google Scholar] [CrossRef]
- Birch, M.E.J.; Fisher, P. Grain refining of commercial aluminium alloys with titanium boron aluminium. In Aluminium Technology ’86: Proceedings of the International Conference; Shepard, T., Ed.; The Institute of Metals: London, UK, 1986; pp. 117–124. [Google Scholar]
- Ahmady, S.M.; McCartney, D.G.; Thistlethwaite, S.R. Assessment of aluminium grain refiner performance using the ALCOA test. In Light Metals 1990; Bickert, C.M., Ed.; TMS: Warrendale, PA, USA, 1990; pp. 837–843. [Google Scholar]
- Kearns, M.A.; Cooper, P. Effects of solutes on grain refinement of selected wrought aluminium alloys. Mater. Sci. Technol. 1997, 13, 650–654. [Google Scholar] [CrossRef]
- Birch, M.E.J.; Cowell, A.J.J. Grain refinement of aluminium alloys containing chromium and zirconium. In Solidification Processing 1987; Beech, J., Jones, H., Eds.; The Institute of Metals: London, UK, 1988; pp. 149–152. [Google Scholar]
- Abdel-Hamid, A.A. Effect of other elements on the grain refinement of Al by Ti or Ti and B. Part I—A critical review. Z. Metallkd. 1989, 80, 566–569. [Google Scholar]
- Abdel-Hamid, A.A. Effect of other elements on the grain refinement of aluminum by titanium or titanium and boron. Part II. Effect of the refractory metals vanadium, molybdenum, zirconium, and tantalum. Z. Metallkd. 1989, 80, 643–647. [Google Scholar]
- Sigworth, G.K.; Guzowaski, M.M. Grain refining of hypoeutectic Al-Si alloys. AFS Trans. 1985, 93, 907–912. [Google Scholar]
- Johnsson, M. Influence of Si and Fe on the grain refinement of aluminium. Z. Metallk. 1994, 85, 781–785. [Google Scholar] [CrossRef]
- Spittle, J.A.; Keeble, J.M.; Al Meshhedani, M. The grain refinement of Al-Si foundry alloys. In Light Metals 1997; Huglen, R., Ed.; TMS: Warrendale, PA, USA, 1997; pp. 795–800. [Google Scholar]
- Hutt, J.E.C.; StJohn, D.H.; Hogan, L.; Dahle, A.K. Equiaxed solidification of Al-Si alloys. Mater. Sci. Technol. 1999, 15, 495–500. [Google Scholar] [CrossRef]
- Lee, Y.C.; Dahle, A.K.; StJohn, D.H.; Hutt, J.E.C. The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys. Mater. Sci. Eng. A 1999, 259, 43–52. [Google Scholar] [CrossRef]
- Birol, Y. Effect of silicon content in grain refining hypoeutectic Al-Si foundry alloys with boron and titanium additions. Mater. Sci. Technol. 2012, 28, 385–389. [Google Scholar] [CrossRef]
- Kori, S.A.; Auradi, V.; Murty, B.S.; Chakraborty, M. Poisoning and fading mechanism of grain refinement in Al-7Si alloy. Mater. Forum 2005, 29, 387–393. [Google Scholar]
- Wang, Y.; Fang, C.M.; Zhou, L.; Hashimoto, T.; Zhou, X.; Ramasse, Q.M.; Fan, Z. Mechanism for Zr poisoning of Al-Ti-B based grain refiners. Acta Mater. 2019, 164, 428–439. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.; Fan, Z. Mechanism of zirconium poisoning effect on TiB2 inoculation in aluminium alloys. In Light Metals 2016; Williams, E., Ed.; TMS: Warrendale, PA, USA, 2016; pp. 725–729. [Google Scholar]
- Wang, S.H.; Wang, Y.; Ramasse, Q.M.; Schmid-Fetzer, R.; Fan, Z. Segregation of yttrium at Mg/MgO interface in Mg-Y alloy. Acta Mater. 2022. [Google Scholar]
- Wang, S.H. Characterisation of Native MgO and Its Roles in Solidification of Mg Alloys. Ph.D. Thesis, Brunel University London, London, UK, 2020. [Google Scholar]
- Wang, Y.; Que, Z.P.; Hashimoto, T.; Zhou, X.; Fan, Z. Mechanism for Si poisoning of Al-Ti-B grain refiners in Al alloys. Metall. Mater. Trans. A 2020, 51, 5743–5757. [Google Scholar] [CrossRef]
- Hofmann, S. Thermodynamics of interfacial segregation in metals and ceramics. J. Chem. Phys. 1987, 84, 141–147. [Google Scholar] [CrossRef]
- Gibbs, J.W. The Collected Works of J. Willard Gibbs; Yale University Press: New Haven, CT, USA, 1948. [Google Scholar]
- Hondros, E.; Seah, M.; Hofmann, S.; Lejcek, P. Physical Metallurgy, 4th ed.; Cahn, R., Haasen, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 1202–1289. [Google Scholar]
- McBain, J.W.; Mills, G.F. The adsorption theorem of J. Willard Gibbs. Anomalies in applying it to surface tension curves that exhibit minima in dilute solution. Rep. Prog. Phys. 1938, 5, 30–45. [Google Scholar] [CrossRef]
- Christian, J.W. The Theory of Transformations in Metals and Alloys, 3rd ed.; Pergamon: Oxford, UK, 2002. [Google Scholar]
- Cantor, B. Heterogeneous nucleation and adsorption. Philos. Trans. R. Soc. Lond. A 2003, 361, 409–417. [Google Scholar] [CrossRef]
- Men, H.; Fan, Z. An analytical model for solute segregation at liquid metal/solid substrate interface. Metall. Mater. Trans. A 2014, 45, 5508–5516. [Google Scholar] [CrossRef]
- Schumacher, P.; Greer, A.L. Heterogeneously nucleated α-Al in amorphous aluminium alloys. Mater. Sci. Eng. A 1994, 178, 309–313. [Google Scholar] [CrossRef]
- Schumacher, P.; Greer, A.L. Enhanced heterogeneous nucleation of α-Al in amorphous aluminium alloys. Mater. Sci. Eng. A 1994, 181–182, 1335–1339. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Xia, M.; Arumuganathar, S. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing. Acta Mater. 2009, 57, 4891–4901. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Z.; Zhou, X.; Thompson, G.E. Characterisation of magnesium oxide and its interface with α-Mg in Mg-Al based alloys. Phil. Mag. Lett. 2011, 91, 516–529. [Google Scholar] [CrossRef]
- Koch, C. Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. Ph.D. Thesis, Arizona State University, Tempe, AR, USA, January 2002. [Google Scholar]
- Verwey, E.J.W. The crystal structure of γ-Fe2O3 and γ-Al2O3. Z. Kristallogr. 1935, 91, 65–69. [Google Scholar] [CrossRef]
- Fang, C.M.; Yasmin, S.; Fan, Z. Interfacial interaction and prenucleation at liquid-Al/γ-Al2O3{1 1 1} interfaces from ab initio molecular dynamics simulations. J. Phys. Comm. 2021, 5, 015007. [Google Scholar] [CrossRef]
- Fiquet, G.; Richet, P.; Montagnac, G. High-temperature thermal expansion of lime, periclase, corundum and spinel. Phys. Chem. Min. 1999, 27, 103–111. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17978. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Atomic ordering at the liquid-Al/MgAl2O4{1 1 1} interfaces: Ab initio molecular dynamics simulations. Metal. Mater. Trans. A 2020, 51, 6318–6326. [Google Scholar] [CrossRef]
- Hintzsche, L.E.; Fang, C.M.; Watts, T.; Marsman, M.; Jordan, G.; Lamers, M.W.P.E.; Weeber, A.W.; Kresse, G. Density functional theory study of the structural and electronic properties of amorphous silicon nitrides: Si3N4-x:H. Phys. Rev. B 2012, 86, 235204. [Google Scholar] [CrossRef]
- Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- AA TP1; Standard Test Procedure for Aluminium Alloy Grain Refiners (TP-1). The Aluminium Association: Washington, DC, USA, 1990.
- Wang, Y.; Petal, J.B.; Zhang, Y.; Fan, Z. Examination of Commercial Al-5Ti-1B Grain Refiners from MQP Ltd and STNM Ltd, Technical Report; MQP Ltd: Solihull, UK, 2021.
- Fan, Z.; Men, H.; Wang, Y.; Que, Z.P. A new atomistic mechanism for heterogeneous nucleation in the systems with negative lattice misfit: Creating a 2D template for crystal growth. Metals 2021, 11, 478. [Google Scholar] [CrossRef]
- Greer, A.L.; Bunn, A.M.; Tronche, A.; Evans, P.V.; Bristow, D.J. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B. Acta Mater. 2000, 48, 2823–2835. [Google Scholar] [CrossRef]
- Qin, T.; Fan, Z. Molecular analysis of grain refining in aluminium with Al-5Ti-B. IOP Conf. Ser. Mater. Sci. Eng. 2011, 27, 012007. [Google Scholar]
- Wang, J.; Horsfield, A.; Schwingenschlögl, U.; Lee, P.D. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study. Phys. Rev. B 2010, 82, 184203. [Google Scholar] [CrossRef]
- Ma, S.; Yan, R.; Jing, T.; Dong, H. Substrate-induced liquid layering: A new insight into the heterogeneous nucleation of liquid metals. Metals 2018, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Dolukhanyan, S.K.; Aleksanyan, A.G.; Ter-Galstyan, O.P.; Shekhtman, V.S.; Sakharov, M.K.; Abrosimova, G.E. Specifics of the formation of alloys and their hydrides in Ti-Zr-H system. Russ. J. Phys. Chem. B 2007, 1, 563–569. [Google Scholar] [CrossRef]
- Khaliq, A.; Rhamdhani, M.A.; Brooks, G.A.; Grandfield, J. Thermodynamic analysis of Ti, Zr, V and Cr impurities in aluminium melt. In Light Metals 2011; Lindsay, S.J., Ed.; TMS: Warrendale, PA, USA, 2011; pp. 751–756. [Google Scholar]
- Farrar, P.A.; Adler, S. On the system titanium-zirconium. Trans. Metall. Soc. AIME 1996, 236, 1061–1064. [Google Scholar]
- Men, H.; Fan, Z. Prenucleation induced by crystalline substrates. Metall. Mater. Trans. A 2018, 49, 2766–2777. [Google Scholar] [CrossRef]
- Que, Z.P.; Zhou, Y.P.; Xia, J.H.; Wang, Y.; Fang, C.M.; Mendis, C.L.; Fan, Z. Heterogeneous nucleation and refinement of Fe-containing intermetallic compounds in Al alloys. In The Future Liquid Metal Engineering Hub, Report 2015–2021; LiME: Uxbridge, UK, 2021; pp. 44–45. Available online: https://www.lime.ac.uk/blog/2021-annual-report-published (accessed on 1 October 2021).
- Que, Z.P.; Wang, Y.; Mendis, C.L.; Fang, C.M.; Xia, J.H.; Zhou, X.R.; Fan, Z. Formation, morphology control and refinement of Fe-containing intermetallic compounds in Al alloys: An overview. Metals, 2022; in press. [Google Scholar]
- Que, Z.P.; Zhou, Y.P.; Wang, Y.; Fan, Z. Composition templating for heterogeneous nucleation of intermetallic compounds. In SP’17-Solidification Processing 2017; Fan, Z., Ed.; Brunel University London: Uxbridge, UK, 2017; pp. 158–161. [Google Scholar]
- Que, Z.; Wang, Y.; Fan, Z. Heterogeneous nucleation of eutectic structure in Al-Mg-Si alloys. Metall. Mater. Trans. A 2020, 51, 2697–2702. [Google Scholar] [CrossRef]
- Fan, Z.; Que, Z.; Wang, Y.; Jiang, B. Structural and compositional templating for heterogeneous nucleation. In Frontiers in Sonification; Kurz, W., Dantzig, J., Karma, A., Hoyt, J., Eds.; Symposium in honour of Michel Rappaz; TMS: Warrendale, PA, USA, 2016; pp. 17–21. [Google Scholar]
- Li, J.; Hage, F.S.; Ramasse, Q.M.; Schumacher, P. The nucleation sequence of α-Al on TiB2 particles in Al-Cu alloys. Acta Mater. 2021, 206, 116652. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, Y.; Ramasse, Q.; Fan, Z. The nature of native MgO in Mg and its alloys. Metall. Mater. Trans. A 2020, 51, 2957–2974. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, G.S.; Fan, Z. Grain refinement of Mg and its alloys by inoculation of in situ MgO particles. In Magnesium Technology 2017; Solanki, K.N., Orlov, D., Singh, A., Neelameggham, N.R., Eds.; TMS: Warrendale, PA, USA, 2017; pp. 99–106. [Google Scholar]
- Fan, Z.; Wang, Y.; Zhang, Z.F.; Xia, M.; Li, H.T.; Xu, J.; Granasy, L.; Scamans, G.M. Shear enhanced heterogeneous nucleation in some Mg- and Al- alloys. Int. J Cast Metals Res. 2009, 22, 318–322. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, M.; Fan, Z.; Zhou, X.; Thompson, G.E. The effect of Al8Mn5 intermetallic particles on grain size of as-cast Mg-Al-Zn AZ91D alloy. Intermetallics 2010, 18, 1683–1689. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, F.; Wang, Y.; Wang, S.H.; Petal, J.B. Grain refining of Mg-alloys by native MgO particles: An overview. J. Magnes. Alloy. 2022; in press. [Google Scholar]
- Wang, Y.; Li, H.T.; Fan, Z. Grain refinement of Al- and Mg- alloys by native oxide particles. In Solidification Processing 2017; Fan, Z., Ed.; Brunel University London: Uxbridge, UK, 2017; pp. 81–86. [Google Scholar]
- Peng, G.S.; Wang, Y.; Fan, Z. Competitive heterogeneous nucleation between Zr and MgO particles in commercial purity magnesium. Metall. Mater. Trans. A 2018, 49, 2182–2192. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, F.; Wang, Y.; Ramasse, Q.M.; Fan, Z. Segregation of Ca at the Mg/MgO interface and its effect on grain refinement of Mg alloys. Mater. Sci. Eng. 2019, 529, 012048. [Google Scholar] [CrossRef]
- Zuo, Y.B.; Xia, M.X.; Liang, S.M.; Wang, Y.; Scamans, G.M.; Fan, Z. Grain refinement of DC cast AZ91D Mg alloy by intensive melt shearing. Mater. Sci. Technol. 2011, 27, 101–107. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Y.; Fan, Z. A physical approach to the direct recycling of Mg-alloy scrap by the rheo-diecasting process. Mater. Sci. Eng. A 2008, 472, 251–257. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, F.; Jiang, B.; Que, Z. Impeding nucleation for more significant grain refinement. Sci. Rep. 2020, 10, 9448. [Google Scholar] [CrossRef]
- Men, H.; Jiang, B.; Fan, Z. Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt. Acta Mater. 2010, 58, 6526–6534. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Prenucleation at the interface between MgO and liquid magnesium: An ab initio molecular dynamics study. Metall. Mater. Trans. A 2020, 51, 788–797. [Google Scholar]
- Katagiri, S.; Ishizawa, N.; Marumo, F. A new high temperature modification of face-centered cubic Y2O3. Powder Diffr. 1993, 8, 60. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 41, 846–2829. [Google Scholar]
- Narayanan, L.A.; Samuel, F.H.; Gruzleski, J.E. Crystallization behaviour of iron-containing intermetallic compounds in 319 aluminium alloy. Metall. Mater. Trans. A 1994, 25, 1761–1773. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.T.; Fan, Z. Oxidation of aluminium alloy melts and inoculation by oxide particles. Trans. Indian Inst. Met. 2012, 65, 653–661. [Google Scholar] [CrossRef]
- Li, H.T.; Wang, Y.; Xia, M.; Zuo, Y.; Fan, Z. Harnessing oxides in liquid metals and alloys. In Solidification Science and Technology: Proceedings of the John Hunt International Symposium 12–14 December 2011, Brunel University, UK; Fan, Z., Stone, I.C., Eds.; Brunel University Press: Uxbridge, UK, 2011; pp. 93–110. [Google Scholar]
- Wang, S.H.; Fang, C.M.; Wang, Y.; Lordan, E.; Fan, Z. Segregation of La at Al/γ-Al2O3 interface. Acta Mater. 2022; submitted. [Google Scholar]
- Li, H.T.; Wang, Y.; Fan, Z. Mechanisms of heterogeneous nucleation during solidification in binary Al-Mg alloys. Acta Mater. 2012, 60, 1528–1537. [Google Scholar]
- Cibula, A. The effect of C and B in the grain refinement of sand casting in aluminium alloys. J. Inst. Met. 1951, 80, 1–16. [Google Scholar]
- Johnsson, M.; Bäckerud, L.; Sigworth, G.K. Study of the mechanism of grain refinement of aluminium after additions of Ti-and B-containing master alloys. Metall. Trans. A 1993, 24, 481–491. [Google Scholar]
- Quested, T.E.; Greer, A.L. The effect of the size distribution of inoculant particles on as-cast crystal size in aluminium alloys. Acta Mater. 2004, 52, 3859–3868. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, S.; Que, Z.; Fang, C.; Hashimoto, T.; Zhou, X.; Ramasse, Q.M.; Fan, Z. Manipulating Nucleation Potency of Substrates by Interfacial Segregation: An Overview. Metals 2022, 12, 1636. https://doi.org/10.3390/met12101636
Wang Y, Wang S, Que Z, Fang C, Hashimoto T, Zhou X, Ramasse QM, Fan Z. Manipulating Nucleation Potency of Substrates by Interfacial Segregation: An Overview. Metals. 2022; 12(10):1636. https://doi.org/10.3390/met12101636
Chicago/Turabian StyleWang, Yun, Shihao Wang, Zhongping Que, Changming Fang, Teruo Hashimoto, Xiaorong Zhou, Quentin M. Ramasse, and Zhongyun Fan. 2022. "Manipulating Nucleation Potency of Substrates by Interfacial Segregation: An Overview" Metals 12, no. 10: 1636. https://doi.org/10.3390/met12101636
APA StyleWang, Y., Wang, S., Que, Z., Fang, C., Hashimoto, T., Zhou, X., Ramasse, Q. M., & Fan, Z. (2022). Manipulating Nucleation Potency of Substrates by Interfacial Segregation: An Overview. Metals, 12(10), 1636. https://doi.org/10.3390/met12101636