Electrochemical Corrosion Behavior of CrFeCoNi and CrMnFeCoNi Coatings in Salt Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
- (1)
- The CrFeCoNi and CrMnFeCoNi coatings exhibited single phase structures. The CrFeCoNi coating had a higher fraction of LAGBs, low CSL boundaries and Σ3 boundaries than the CrMnFeCoNi coatings.
- (2)
- The electrochemical tests results indicated that the CrFeCoNi coating exhibited lower corrosion current density, passive current density, pitting sensibility and higher charge transfer resistance than the CrMnFeCoNi coating, indicating that the CrFeCoNi coating possessed better corrosion resistance.
- (3)
- The localized electrochemical impedance spectroscopy results showed the overall local impedance modulus value of the CrFeCoNi coating was higher than that of the CrMnFeCoNi coating, indicating the former had lower corrosion reaction activity.
- (4)
- The better corrosion resistance of the CrFeCoNi coating could be attributed to the high fraction of Σ3 boundaries, low fraction of the high angle boundaries and high local impedance modulus value.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 229–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Vaidya, M.; Trubel, S.; Murty, B.S.; Wilde, G.; Divinski, S.V. Ni trace diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloy. Compd. 2016, 688, 994–1001. [Google Scholar] [CrossRef]
- Lin, D.Y.; Xu, L.Y.; Jing, H.Y.; Han, Y.D.; Zhao, L.; Minami, F. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting. Addit. Manuf. 2020, 32, 101058. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Meghwal, A.; Anupam, A.; Luzin, V.; Schulz, C.; Hail, C.; Murty, B.S.; Kottada, R.S.; Berndt, C.C.; Ang, A.S.M. Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings. J. Alloy. Compd. 2021, 854, 157140. [Google Scholar] [CrossRef]
- Wang, C.M.; Yu, J.X.; Zhang, Y.; Yu, Y. Phase evolution and solidification cracking sensibility in laser remelting treatment of the plasma-sprayed CrMnFeCoNi high entropy alloy coating. Mate. Des. 2019, 182, 108040. [Google Scholar] [CrossRef]
- Wang, C.M.; Yu, Y.; Yu, J.X.; Zhang, Y.; Wang, F.C.; Li, H.D. Effect of the macro-segregation on corrosion behavior of CrMnFeCoNi coating prepared by arc cladding. J. Alloy. Compd. 2020, 846, 156263. [Google Scholar] [CrossRef]
- Ye, Q.F.; Feng, K.; Li, Z.G.; Lu, F.G.; Li, R.F.; Huang, J.; Wu, Y.X. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl. Surf. Sci. 2017, 396, 1420–1426. [Google Scholar] [CrossRef]
- Yin, S.; Li, W.Y.; Song, B.; Yan, X.C.; Kuang, M.; Xu, Y.X.; Wen, K.; Lupoi, R. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. J. Mater. Sci. Technol. 2019, 35, 1003–1007. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Zhang, X.M.; Quan, H.; Chen, Y.J.; Wang, S.; Zhang, S. Effect of Mo addition on structures and properties of FeCoNiCrMn high entropy alloy film by direct current magnetron sputtering. J. Alloy. Compd. 2022, 895, 162709. [Google Scholar] [CrossRef]
- Fan, Q.K.; Chen, C.; Fan, C.L.; Liu, Z.; Cai, X.Y.; Lin, S.B. AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding: Microstructure, mechanical and corrosion properties. Intermetallics 2021, 138, 107337. [Google Scholar] [CrossRef]
- Cui, C.; Wu, M.P.; Miao, X.J.; Zhao, Z.S.; Gong, Y.L. Microstructure and corrosion behavior of CeO2/FeCoNiCrMo high-entropy alloy coating prepared by laser cladding. J. Alloy. Compd. 2022, 890, 161826. [Google Scholar] [CrossRef]
- Aliyu, A.; Srivastava, C. Microstructure and corrosion properties of MnCrFeCoNi high entropy alloy-graphene oxide composite coatings. Materialia 2019, 5, 100249. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.Y.; Han, B.; Zhang, S.Y.; Li, Y.; Hu, C.Y. Investigation on microstructures and properties of Al1.5CoCrFeMnNi high entropy alloy coating before and after ultrasonic impact treatment. J. Alloy. Compd. 2021, 884, 160989. [Google Scholar] [CrossRef]
- Fan, Q.K.; Chen, C.; Fan, C.L.; Liu, Z.; Cai, X.Y.; Lin, S.B.; Yang, C.L. Ultrasonic induces grain refinement in gas tungsten arc cladding AlCoCrFeNi high-entropy alloy coatings. Mater. Sci. Eng. A 2021, 821, 141607. [Google Scholar] [CrossRef]
- Bechtle, S.; Kumar, M.; Somerday, B.P.; Launey, M.E.; Ritchie, R.O. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 2009, 57, 4148–4157. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.B.; Wang, Z.; Ding, H.; Xi, J.; Fu, W. Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel. J. Mater. Sci. Technol. 2017, 33, 1621–1628. [Google Scholar]
- An, X.L.; Chu, C.L.; Zhou, L.; Ji, J.; Shen, B.L.; Chu, P.K. Controlling the corrosion behavior of CoNiFe medium entropy alloy by grain boundary engineering. Mater. Charact. 2020, 164, 110323. [Google Scholar] [CrossRef]
- Jones, R.; Randle, V. Sensitisation behaviour of grain boundary engineered austenitic stainless steel. Mater. Sci. Eng. A 2010, 527, 4275–4280. [Google Scholar] [CrossRef]
- Tsai, S.P.; Makineni, S.K.; Gault, B.; Kawano-Miyata, K.; Taniyama, A.; Zaefferer, S. Precipitation formation on ∑5 and ∑7 grain boundaries in 316L stainless steel and their roles on intergranular corrosion. Acta Mater. 2021, 210, 116822. [Google Scholar] [CrossRef]
- Losiewica, B.; Smolka, M.P.A.; Szklarska, M.; Osak, P.; Budniok, A. Localized electrochemical impedance spectroscopy for studying the corrosion processes in a nanoscale. Solid State Phenom. 2015, 228, 383–393. [Google Scholar] [CrossRef]
- Huang, V.M.W.; Wu, S.L.; Orazem, M.E.; Pebere, N.; Tribollet, B.; Vivier, V. Local electrochemical impedance spectroscopy: A review and some recent developments. Electrochim. Acta 2011, 56, 8048–8057. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.M.; Yu, J.X.; Yu, Y.; Zhao, Y.; Zhang, Y.; Han, X.X. Comparison of the corrosion and passivity behavior between CrMnFeCoNi and CrFeCoNi coatings prepared by argon arc cladding. J. Mater. Res. Technol. 2020, 9, 8482–8496. [Google Scholar] [CrossRef]
- Wang, C.M.; Yu, Y.; Yu, J.X.; Zhang, Y.; Zhao, Y.; Yuan, Q.W. Microstructure evolution and corrosion behavior of dissimilar 304/430 stainless steel welded joints. J. Manuf. Process. 2020, 50, 183–191. [Google Scholar] [CrossRef]
- Hasannaeimi, V.; Mukherjee, S. Galvanic corrosion in a eutectic high entropy alloy. J. Electroanal. Chem. 2019, 848, 113331. [Google Scholar] [CrossRef]
- Poursaee, A. Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete. Electrochim. Acta 2010, 55, 1200–1206. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Chen, S.S.; Dou, Y.P.; Han, S.K.; Wang, L.W.; Man, C.; Wang, X.; Chen, S.G.; Cheng, Y.F.; Li, X.G. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH. Corros. Sci. 2019, 150, 218–234. [Google Scholar]
- Wang, C.M.; Yu, Y.; Shao, M.H.; Zhang, H. Effect of Temperature on Corrosion Behavior of Laser-remelted CrFeCoNi Coating. Metals 2022, 12, 970. [Google Scholar] [CrossRef]
- Escriva-Cerdan, C.; Blasco-Tamarit, E.; Garcia-Garcia, D.M.; Garcia-Anton, J.; Akid, R.; Walton, J. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions. Electrochim. Acta 2013, 111, 552–561. [Google Scholar] [CrossRef]
- Wang, C.M.; Yu, Y.; Zhang, H.; Ma, L.X.; Wang, F.F.; Song, B.Y. Microstructure and corrosion properties of laser remelted CrFeCoNi and CrMnFeCoNi high entropy alloys coatings. J. Mater. Res. Technol. 2021, 15, 5187–5196. [Google Scholar] [CrossRef]
- Losiewicz, B.; Kubiszta, J. Effect of hydrogen electrosorption on corrosion resistance of Pd80Rh20 alloy in sulfuric acid: EIS and LEIS study. Int. J. Hydrog. Energy 2018, 43, 20004–20010. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, Y.; Zhou, J.; Liu, G.; Ren, X. Influence of the grain boundary character distribution and random high angle grain boundaries networks on intergranular corrosion in high purity copper. Mater. Lett. 2019, 253, 424–426. [Google Scholar] [CrossRef]
- Katnagallu, S.S.; Mandal, S.; Nagaraja, A.C.; de Boer, B.; Vadlamani, S.S. Role of carbide precipitates and process parameters on achieving grain boundary engineered microstructure in a Ni-based superalloy. Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. 2015, 46, 4740–4754. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Z.; Liang, T.; Suzuki, K.; Hideo, M. Effect of tungsten on microstructures of annealed electrodeposited Ni-W alloy and its corrosion resistance. Surf. Coat. Technol. 2018, 337, 516–524. [Google Scholar]
Material | Fe | Cr | Mn | Ni | C | P | Cu | Si | Nb | V | Ti | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Substrate (wt.%) | Bal | 0.25 | 1.60 | 0.30 | 0.09 | 0.02 | 0.30 | 0.35 | 0.06 | 0.06 | 0.02 | 0.30 |
Elements | Fe (at%) | Co (at%) | Ni (at%) | Cr (at%) | Mn (at%) |
---|---|---|---|---|---|
CrFeCoNi | 29.00 | 24.25 | 24.00 | 22.75 | - |
CrMnFeCoNi | 22.09 | 17.60 | 18.84 | 20.35 | 21.11 |
Heading | CrFeCoNi | CrMnFeCoNi |
---|---|---|
(Ω cm2) | 2.43 | 2.36 |
(Ω cm2) | 5.91 × 105 | 4.04 × 105 |
(Ω−1 cm−2 sn) | 2.42 × 10−5 | 2.73 × 10−5 |
n | 0.94 | 0.92 |
3.43 × 10−4 | 4.94 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yu, Y.; He, P.; Zhang, J.; Ma, X.; Zhang, H.; Li, H.; Shao, M. Electrochemical Corrosion Behavior of CrFeCoNi and CrMnFeCoNi Coatings in Salt Solution. Metals 2022, 12, 1752. https://doi.org/10.3390/met12101752
Wang C, Yu Y, He P, Zhang J, Ma X, Zhang H, Li H, Shao M. Electrochemical Corrosion Behavior of CrFeCoNi and CrMnFeCoNi Coatings in Salt Solution. Metals. 2022; 12(10):1752. https://doi.org/10.3390/met12101752
Chicago/Turabian StyleWang, Caimei, Yang Yu, Peng He, Jianjun Zhang, Xiaoyu Ma, Hua Zhang, Huizhao Li, and Minghao Shao. 2022. "Electrochemical Corrosion Behavior of CrFeCoNi and CrMnFeCoNi Coatings in Salt Solution" Metals 12, no. 10: 1752. https://doi.org/10.3390/met12101752
APA StyleWang, C., Yu, Y., He, P., Zhang, J., Ma, X., Zhang, H., Li, H., & Shao, M. (2022). Electrochemical Corrosion Behavior of CrFeCoNi and CrMnFeCoNi Coatings in Salt Solution. Metals, 12(10), 1752. https://doi.org/10.3390/met12101752