Synthesizing of Metallized Acrylic Containing Both Gadolinium and Lead as a Transparent Radiation Shielding Material and Its Physical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Metallized Acrylic Containing Gd and Pb
2.3. Characterizations and Shielding Performance Analysis
2.4. Mechanical Properties Tests
3. Results and Discussion
3.1. The Properties of Metallized Acrylic under Different Formulations
3.2. Polymerization Results of the Metallized Acrylic under Different Polymerization Procedure
3.3. Infrared Spectrogram of Metallized Acrylic Containing Gd and Pb
3.4. The Variation of Transmittance of Metallized Acrylic with Contents of Gd
3.5. The Mechanical Property of Metallized Acrylic Containing Both Gd and Pb
3.6. The Shielding Performance of Metallized Acrylic Containing Both Gd and Pb
3.7. Quasi-Static Uniaxial Tensile Test Results and Model Fitting
3.7.1. The Modified ZWT Constitutive Model
- ZWT nonlinear viscoelastic constitutive model
- Mooney–Rivlin hyperelastic model
- Modified ZWT constitutive model for organic glass containing Gd and Pb
3.7.2. Tension Responses of Metallized Acrylic Containing Gd and Pb
3.7.3. Temperature Dependence of the Constitutive Parameters of Modified ZWT Model for the Metallized Acrylic
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Louis, H.K.; Refeat, R.M.; Hassan, M.I. Control rod shadowing effect in PWR core utilizing Urania-Gadolinia fuel. Prog. Nucl. Energy 2021, 142, 103993. [Google Scholar] [CrossRef]
- Uguru, E.H.; Sapli, M.F.B.A.; Sani, S.A.; Khandaker, M.U.; Rabir, M.H.; Karim, J.A.; Bradley, D.A. Impact of weight percent gadolinium and the number of its fuel rods on the neutronic and safety parameters. Radiat. Phys. Chem. 2021, 188, 109686. [Google Scholar] [CrossRef]
- Tanaka, T.; Hagiwara, K.; Gazzola, E.; Ali, A.; Ou, I.; Sudo, T.; Kumar Das, P.; Singh Reen, M.; Dhir, R.; Koshio, Y. Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium. Prog. Theor. Exp. Phys. 2020, 2020, 43D02. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, C.; Li, J.; Wang, W. Shielding composites for neutron and gamma-radiation with Gd2O3@ W core-shell structured particles. Mater. Lett. 2020, 276, 128082. [Google Scholar] [CrossRef]
- Mahmoud, M.; Makhlouf, S.A.; Alshahrani, B.; Yakout, H.A.; Shaaban, K.S.; Wahab, E.A. Experimental and simulation investigations of mechanical properties and gamma radiation shielding of lithium cadmium gadolinium silicate glasses doped erbium ions. Silicon 2022, 14, 2905–2919. [Google Scholar] [CrossRef]
- Cheewasukhanont, W.; Limkitjaroenporn, P.; Sayyed, M.I.; Kothan, S.; Kim, H.J.; Kaewkhao, J. High density of tungsten gadolinium borate glasses for radiation shielding material: Effect of WO3 concentration. Radiat. Phys. Chem. 2022, 192, 109926. [Google Scholar] [CrossRef]
- Dong, M.G.; Xue, X.X.; Singh, V.P.; Yang, H.; Li, Z.F.; Sayyed, M.I. Shielding effectiveness of boron-containing ores in Liaoning province of China against gamma rays and thermal neutrons. Nucl. Sci. Tech. 2018, 29, 58. [Google Scholar] [CrossRef]
- Mheemeed, A.; Hasan, H.; Al-Jomaily, F. Gamma-ray absorption using rubber—Lead mixtures as radiation protection shields. J. Radioanal. Nucl. Chem. 2012, 291, 653–659. [Google Scholar] [CrossRef]
- Tisell, L.E.; Hansson, G.; Lindberg, S.; Ragnhult, I. Hyperparathyroidism in persons treated with X-rays for tuberculous cervical adenitis. Cancer 1977, 40, 846–854. [Google Scholar] [CrossRef]
- Griffith, J.A.; Bayer, T.S. A bio-inspired chemical sensor of gamma and neutron radiation. Sens. Actuators B 2014, 190, 818–821. [Google Scholar] [CrossRef]
- Lin, Q.; Yang, B.; Li, J.; Meng, X.S.; Shen, J.C. Synthesis, characterization and property studies of Pb2+-containing optical resins. Polymer 2000, 41, 8305–8309. [Google Scholar] [CrossRef]
- Chen, J.B.; Jiang, P.P.; Lin, X.M. Study on Preparation and Performance of Organic Glass Containing Pb by Microemulsion Polymerization. China Plast. Ind. 2008, 02, 67–70. [Google Scholar]
- Fu, Q.; Bu, M.X.; Xu, W.R.; Chen, L.; Li, D.; He, J.Q.; Kou, H.L.; Li, H. Comparative analysis of dynamic constitutive response of hybrid fibre-reinforced concrete with different matrix strengths. Int. J. Impact Eng. 2021, 148, 103763. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, P.W.; Zhang, Y.; Li, Z.R. Compressive behavior and constitutive model of polyurea at high strain rates and high temperatures. Mater. Today Commun. 2020, 22, 100834. [Google Scholar] [CrossRef]
- Xiao, Y.C.; Fan, C.Y.; Wang, Z.J.; Sun, Y. Visco-hyperelastic constitutive modeling of the dynamic mechanical behavior of HTPB casting explosive and its polymer binder. Acta Mech. 2020, 231, 2257–2272. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, P.F.; Xue, X.; Liu, M.; Xu, S.L. Enhancing the dynamic temperature stability of epoxy with graphene oxide. Mech. Mater. 2020, 150, 103593. [Google Scholar] [CrossRef]
- Balandin, V.V.; Selyutina, N.S.; Petrov, Y.V. Effect of the Mass Fraction of Ice on the Strain Rate Dependence of Strength under Dynamic Fracture of Frozen Soil. J. Appl. Mech. Tech. Phys. 2019, 60, 533–538. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.J.; Zhang, W.H. Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model. Compos. Struct. 2014, 108, 21–30. [Google Scholar] [CrossRef]
- Dar, U.A.; Zhang, W.H.; Xu, Y.J. Numerical implementation of strain rate dependent thermo viscoelastic constitutive relation to simulate the mechanical behavior of PMMA. Int. J. Mech. Mater. Des. 2014, 10, 93–107. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Zheng, K.; Bakura, T.J.; Totakhil, P.G. Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete. Constr. Build. Mater. 2018, 187, 584–595. [Google Scholar] [CrossRef]
- Fu, T.T.; Zhu, Z.W.; Zhang, D.; Liu, Z.J.; Xie, Q.J. Research on damage viscoelastic dynamic constitutive model of frozen soil. Cold Reg. Sci. Technol. 2019, 160, 209–221. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, S.; Wang, L. An analysis of stress uniformity for concrete-like specimens during SHPB tests. Int. J. Impact Eng. 2009, 36, 61–72. [Google Scholar] [CrossRef]
- Wang, L.L.; Yang, L.M. The Progress in Impact Dynamics, 1st ed.; The Press of Chinese Sciences and Technology University: Hefei, China, 1992; pp. 88–116. [Google Scholar]
- Xu, X.; Gao, S.Q.; Zhang, D.M.; Niu, S.H.; Jin, L.; Ou, Z.C. Mechanical behavior of liquid nitrile rubber-modified epoxy resin: Experiments, constitutive model and application. Int. J. Mech. Sci. 2019, 151, 46–60. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, J.S.; Zhang, Z.S.; Chen, X. Rate-dependent compressive behavior of EPDM insulation: Experimental and constitutive analysis. Mech. Mater. 2016, 96, 30–38. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Zhang, Y.; Wang, Z.; Liu, J.; Zhang, M. Self-polymerization and co-polymerization kinetics of gadolinium methacrylate. J. Rare Earths 2018, 36, 298–303. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Guo, X.T.; Wang, C.H.; Lu, X.A.; Wu, D.F.; Zhang, M. Gadolinium-and lead-containing functional terpolymers for low energy X-ray protection. Nucl. Eng. Technol. 2021, 53, 4130–4136. [Google Scholar] [CrossRef]
- Hui, H. Study on the Metal-Containing Optical Plastics. Master’s Thesis, Changchun University of Science and Technology, Changchun, China, 2000. [Google Scholar]
- Zhang, Y.J.; Wang, C.H.; Wu, D.F.; Guo, X.T.; Yu, L.; Zhang, M. Probing the effect of straight chain fatty acids on the properties of lead-containing plexiglass. React. Chem. Eng. 2021, 6, 1628–1634. [Google Scholar] [CrossRef]
- Wang, C.R.; Wang, C.H.; He, M.M.; Li, T.; Yan, C.H.; Zhang, M. Preparation and Properties of Gd3+-Containing Organic Glass. Rare Met. 2010, 34, 568–573. [Google Scholar]
- Liming, Y.; Lilih, W.; Zhaoxiang, Z. A micromechanical analysis of the nonlinear elastic and viscoelastic constitutive relation of a polymer filled with rigid particles. Acta Mech. Sin. 1994, 10, 176–185. [Google Scholar] [CrossRef]
- Hoss, L.; Marczak, R.J. Hyperelastic Constitutive Models for Incompressible Elastomers: Fitting, Performance Comparison and Proposal of a New Model. In Proceedings of the 20th International Congress of Mechanical Engineering, Gramado, Brazil, 15–20 November 2009. [Google Scholar]
- Steinmann, P.; Hossain, M.; Possart, G. Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 2012, 82, 1183–1217. [Google Scholar] [CrossRef]
- Khajehsaeid, H.; Arghavani, J.; Naghdabadi, R. A hyperelastic constitutive model for rubber-like materials. Eur. J. Mech. -A/Solids 2013, 38, 144–151. [Google Scholar] [CrossRef]
- Koziey, B.; Ghafur, M.; Vlachopoulos, J.; Mirza, F. Computer simulation of thermoforming. In Composite Sheet Forming; Composite Materials Series; Elsevier: Amsterdam, The Netherlands, 1997; pp. 75–89. [Google Scholar]
- Bourgin, P.; Cormeau, I.; Saint-Matin, T. A first step towards the modelling of the thermoforming of plastic sheets. J. Mater. Processing Technol. 1995, 54, 1–11. [Google Scholar] [CrossRef]
- Nam, G.J.; Lee, J.W.; Ahn, K.H. Three-dimensional simulation of thermoforming process and its comparison with experiments. Polym. Eng. Sci. 2000, 40, 2232–2240. [Google Scholar] [CrossRef]
- Destrade, M.; Saccomandi, G. Finite-amplitude inhomogeneous waves in Mooney–Rivlin viscoelastic solids. Wave Motion 2004, 40, 251–262. [Google Scholar] [CrossRef] [Green Version]
Sample Code | BPA(EO)2DA /AM/MAA | Transmittance/% | Impact Strength/KJ/m2 | Bending Strength/MPa |
---|---|---|---|---|
A-1 | 25/20/5 | 89.2 | 20.43 | 60.97 |
A-2 | 25/22.5/2.5 | 89.1 | 17.86 | 78.21 |
A-3 | 20/25/5 | 87.6 | 13.46 | 89.32 |
A-4 | 20/27.5/2.5 | 87.0 | 21.91 | 93.45 |
Sample Code | Polymerization Procedure | Transmittance/% | Impact Strength/KJ/m2 | Bending Strength/MPa |
---|---|---|---|---|
B-1 | 55 °C/22 h + 60 °C/4 h + 100 °C/2 h | 76.3 | 22.33 | 55.46 |
B-2 | 55 °C/12 h + 60 °C/4 h + 100 °C/2 h | 79.9 | 30.46 | 82.59 |
B-3 | 55 °C/12 h + 60 °C/4 h + 80 °C/2 h + 100 °C/2 h | 80.9 | 28.34 | 101.36 |
T (°C) | C10 (MPa) | C01 (MPa) | E1 (MPa) | θ1 (s) |
---|---|---|---|---|
60 | 47.46 | −42.95 | 1689.83 | 82.74 |
80 | 35.27 | −32.72 | 1051.50 | 85.50 |
90 | 22.80 | −21.91 | 819.35 | 85.50 |
95 | 3.34 | −6.68 | 532.99 | 84.14 |
100 | −8.36 | 3.10 | 476.94 | 79.98 |
Expressions of the Interpolation Functions | R2 |
---|---|
0.9881 | |
0.9908 | |
0.9899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, F.; Liu, Y.; Yu, H.; Zeng, Y.; Lang, L. Synthesizing of Metallized Acrylic Containing Both Gadolinium and Lead as a Transparent Radiation Shielding Material and Its Physical Properties. Metals 2022, 12, 990. https://doi.org/10.3390/met12060990
Zhang B, Wang F, Liu Y, Yu H, Zeng Y, Lang L. Synthesizing of Metallized Acrylic Containing Both Gadolinium and Lead as a Transparent Radiation Shielding Material and Its Physical Properties. Metals. 2022; 12(6):990. https://doi.org/10.3390/met12060990
Chicago/Turabian StyleZhang, Bo, Fang Wang, Yanke Liu, Haoyu Yu, Yuansong Zeng, and Lihui Lang. 2022. "Synthesizing of Metallized Acrylic Containing Both Gadolinium and Lead as a Transparent Radiation Shielding Material and Its Physical Properties" Metals 12, no. 6: 990. https://doi.org/10.3390/met12060990
APA StyleZhang, B., Wang, F., Liu, Y., Yu, H., Zeng, Y., & Lang, L. (2022). Synthesizing of Metallized Acrylic Containing Both Gadolinium and Lead as a Transparent Radiation Shielding Material and Its Physical Properties. Metals, 12(6), 990. https://doi.org/10.3390/met12060990