Analysis of a Double Aging Process in a Maraging 300 Steel Fabricated by Selective Laser Melting, Using the Design of Experiments Technique
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- As a result of the statistical analysis of the design of experiments, it was found that the optimum treatment would be a double aging treatment at 460 °C for 8 h. Maximum hardness and tensile strength values were achieved under these conditions, being 618 HV and 2142 MPa, respectively.
- These values are similar to those obtained by other authors who performed an austenizing treatment prior to aging, which confirms that excellent mechanical properties can be achieved by omitting this solubilization treatment prior to aging.
- The presence of reverse austenite was found at the ageing temperature of 520 °C. The ageing temperature was the only factor that had a significant effect on the formation of reverse austenite. It should be noted that the holding time at this temperature did not have a significant effect.
- Corrosion resistance, in aqueous solution of 3.5 wt.% NaCl, increased in the aged samples compared to the as-printed sample. No galvanic corrosion was observed during aging treatments, despite the theoretical anodic behaviour of ferrite against intermetallic precipitates derived from such aging treatment. The predominant electrochemical semireaction seems to be the reduction of the dissolved oxygen in the electrolyte, favouring the dissolution of Fe atoms when the martensite is more saturated in alloying elements. The heat treatment that appears to provide the best corrosion behaviour was over-aging treatment at 520 °C.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Fawkhry, M.K.; Eissa, M.; Fathy, A.; Mattar, T. Development of maraging steel with retained austenite in martensite matrix. Mater. Today-Proc. 2015, 2, 711–714. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, H.; Wu, Y.; Liu, X.; Chen, H.; Yao, M.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017, 544, 460. [Google Scholar] [CrossRef]
- Kolomy, S.; Sedlak, J.; Zouhar, J.; Slany, M.; Benc, M.; Dobrocky, D.; Barenyi, I.; Majerik, J. Influence of Aging Temperature on Mechanical Properties and Structure of M300 Maraging Steel Produced by Selective Laser Melting. Materials 2023, 16, 977. [Google Scholar] [CrossRef] [PubMed]
- Rosenauer, A.; Brandl, D.; Ressel, G.; Lukas, S.; Monschein, S.; Stockinger, M.; Schnitzer, R. Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steel. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2022, 856, 144024. [Google Scholar] [CrossRef]
- Liu, P.; Stigenberg, A.H.; Nilsson, J.O. Quasi-crystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless-steel. Acta Metall. Mater. 1995, 43, 2881–2890. [Google Scholar] [CrossRef]
- Huang, C.Y.; Yen, H.W. HRTEM investigations on nano precipitates in Custom 475 maraging stainless steel. Mater. Charact. 2021, 178, 111216. [Google Scholar] [CrossRef]
- Wan, J.Q.; Ruan, H.H.; Ding, Z.Y.; Kong, L.B. A novel maraging stainless steel ultra-high-strengthened by multi-nanoprecipitations. Scr. Mater. 2023, 226, 115224. [Google Scholar] [CrossRef]
- Habassi, F.; Houria, M.; Barka, N.; Jahazi, M. Influence of post-treatment on microstructure and mechanical properties of additively manufactured C300 maraging steel. Mater. Charact. 2023, 202, 112980. [Google Scholar] [CrossRef]
- Escriba, D.M.; Materna-Morris, E.; Plaut, R.L.; Padilha, A.F. Chi-phase precipitation in a duplex stainless steel. Mater. Charact. 2009, 60, 1214–1219. [Google Scholar] [CrossRef]
- Tan, C.L.; Zhou, K.S.; Ma, W.Y.; Zhang, P.P.; Liu, M.; Kuang, T.C. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017, 134, 23–34. [Google Scholar] [CrossRef]
- Halfa, H.; Seikh, A.H.; Soliman, M.S. Effect of Heat Treatment on Tensile Properties and Microstructure of Co-Free, Low Ni-10 Mo-1.2 Ti Maraging Steel. Materials 2022, 15, 2136. [Google Scholar] [CrossRef] [PubMed]
- Chales, R.; Martins Cardoso, A.d.S.; Pires Garcia, P.S.; da Igreja, H.R.; de Almeida, B.B.; Noris, L.F.; Pardal, J.M.; Maior Tavares, S.S.; da Silva, M.M. Behavior of constitutive models from slow strain rate test of maraging 300 and 350 steels performed in several environmental conditions. Int. J. Fract. 2022, 234, 159–175. [Google Scholar] [CrossRef]
- Rusanenko, V.V.; Edneral, A.F.; Libman, M.A. Structure and properties of titanium-free maraging alloys. Phys. Met. Metallogr. 2006, 101, 66–74. [Google Scholar] [CrossRef]
- Lian, Y.; Ma, M.; Zhang, J.; Huang, J.; Gao, W.; Zhang, Z.; Zhao, C. Influence of Austenizing Temperature on the Microstructure and Mechanical Properties of an Fe-Cr-Ni-Mo-Ti Maraging Stainless Steel. J. Mater. Eng. Perform. 2019, 28, 5466–5475. [Google Scholar] [CrossRef]
- Tavares, S.S.M.; Pardal, J.M.; Martins, T.R.D.; Schmitt, V.M.; Szlejf, J.F.V. Influence of Austenizing on the Mechanical Properties of Maraging 300 and Sae 4340 Steels—Comparative Study. Mater. Res.-Ibero-Am. J. Mater. 2017, 20, 39–46. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Ghavidel, M.R.Z.; Nedjad, S.H.; Heidarzadeh, A.; Ahmadabadi, M.N. Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles. Mater. Charact. 2011, 62, 976–981. [Google Scholar] [CrossRef]
- Simm, T.H.; Sun, L.; Galvin, D.R.; Hill, P.; Rawson, M.; Birosca, S.; Gilbert, E.P.; Bhadeshia, H.; Perkins, K. The Effect of a Two-Stage Heat-Treatment on the Microstructural and Mechanical Properties of a Maraging Steel. Materials 2017, 10, 1346. [Google Scholar] [CrossRef]
- Makhneva, T.M.; Sukhikh, A.A.; Dement’ev, V.B. Inverse Martensitic alpha -> gamma Transformation in Nanostructured Maraging Steels. Met. Sci. Heat Treat. 2017, 59, 473–478. [Google Scholar] [CrossRef]
- Ancey-Rocchi, S.; Vidal, V.; Poulain, T.; Billot, T.; Bechet, D.; Binot, N.; Huleux, V.; Dehmas, M.; Delagnes, D. Influence of Austenitization Parameters on the Precipitation Sequence and the Chemical Homogenization of Austenite in a High-Performance Fe-Ni-Cr-Al-Ti-Mo Stainless Maraging Steel. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2021, 52, 4623–4635. [Google Scholar] [CrossRef]
- Li, X.D.; Yin, Z.D. Reverted austenite during aging in 18ni(350) maraging-steel. Mater. Lett. 1995, 24, 239–242. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, C.; Zhang, J.; Wang, H. Abnormal thermal expansion behaviour and phase transition of laser powder bed fusion maraging steel with different thermal histories during continuous heating. Addit. Manuf. 2022, 53, 102712. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Wang, A.; Zheng, C.; Liu, Z.; Liang, J.; Su, J.; Ge, Q. Effect of Aging on Transformation Behavior of Reverted Austenite and Toughness in Co-Free Maraging Stainless Steel. J. Mater. Eng. Perform. 2022, 31, 9850–9863. [Google Scholar] [CrossRef]
- Khan, H.M.; Ozer, G.; Yilmaz, M.S.; Tarakci, G. Improvement of Corrosion Resistance of Maraging Steel Manufactured by Selective Laser Melting Through Intercritical Heat Treatment. Corrosion 2022, 78, 239–248. [Google Scholar] [CrossRef]
- Conde, F.F.; Escobar, J.D.; Oliveira, J.P.; Jardini, A.L.; Bose Filho, W.W.; Avila, J.A. Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel. Addit. Manuf. 2019, 29, 100804. [Google Scholar] [CrossRef]
- Pepi, M.S. Effects of Prior Processing on the Service Life of an 18% Nickel Maraging Steel Helicopter Landing Mount. J. Fail. Anal. Prev. 2022, 22, 2423–2430. [Google Scholar] [CrossRef]
- Angelastro, A.; Campanelli, S.L. An integrated analytical model for the forecasting of the molten pool dimensions in Selective Laser Melting. Laser Phys. 2022, 32, 026001. [Google Scholar] [CrossRef]
- Kim, D.; Kim, T.; Ha, K.; Oak, J.-J.; Jeon, J.B.; Park, Y.; Lee, W. Effect of Heat Treatment Condition on Microstructural and Mechanical Anisotropies of Selective Laser Melted Maraging 18Ni-300 Steel. Metals 2020, 10, 410. [Google Scholar] [CrossRef]
- Bae, K.; Kim, D.; Lee, W.; Park, Y. Wear Behavior of Conventionally and Directly Aged Maraging 18Ni-300 Steel Produced by Laser Powder Bed Fusion. Materials 2021, 14, 2588. [Google Scholar] [CrossRef]
- Mumtaz, K.; Hopkinson, N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyp. J. 2009, 15, 96–103. [Google Scholar] [CrossRef]
- Guo, Q.X.; Wang, Y.S.; Lin, J.H. Effect of additive and subtractive hybrid manufacturing process on the surface quality of 18Ni300 maraging steel. Mater. Res. Express 2023, 10, 056501. [Google Scholar] [CrossRef]
- Morgan, R.; Sutcliffe, C.J.; O’Neill, W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J. Mater. Sci. 2004, 39, 1195–1205. [Google Scholar] [CrossRef]
- Tariq, F.; Naz, N.; Baloch, R.A. Effect of Cyclic Aging on Mechanical Properties and Microstructure of Maraging Steel 250. J. Mater. Eng. Perform. 2010, 19, 1005–1014. [Google Scholar] [CrossRef]
- Rohit, B.; Muktinutalapati, N.R. Fatigue Behavior of 18% Ni Maraging Steels: A Review. J. Mater. Eng. Perform. 2021, 30, 2341–2354. [Google Scholar] [CrossRef]
- Wang, L.; Dong, C.F.; Man, C.; Kong, D.C.; Xiao, K.; Li, X.G. Enhancing the corrosion resistance of selective laser melted 15-5PH martensite stainless steel via heat treatment. Corros. Sci. 2020, 166, 108427. [Google Scholar] [CrossRef]
- Hong, Y.; Dong, D.; Zou, G.; Li, Y.; Lin, S.; Kuang, T.; Wu, Y.; Dai, M. The corrosion response of the heterogeneous nitriding structure originated from the laser additive manufactured steel. Corros. Sci. 2023, 218, 111188. [Google Scholar] [CrossRef]
- Godec, M.; Podgornik, B.; Kocijan, A.; Donik, C.; Balantic, D.A.S. Use of plasma nitriding to improve the wear and corrosion resistance of 18Ni-300 maraging steel manufactured by selective laser melting. Sci. Rep. 2021, 11, 3277. [Google Scholar] [CrossRef]
- Wang, L.; Dong, C.F.; Yu, Q.; Man, C.; Hu, Y.B.; Dai, Z.B.; Li, X.G. The Correlation Between the Distribution/Size of Carbides and Electrochemical Behavior of 17Cr-1Ni Ferritic-Martensitic Stainless Steel. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2019, 50, 388–400. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhao, H.; Zhang, H.Z.; Yu, Z.S.; Hu, J.; He, L.; Li, J. Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection. Corros. Sci. 2015, 93, 120–125. [Google Scholar] [CrossRef]
- Bae, K.; Shin, D.; Kim, J.H.; Lee, W.K.; Jo, I.; Lee, J.H. Influence of Post Heat Treatment Condition on Corrosion Behavior of 18Ni300 Maraging Steel Manufactured by Laser Powder Bed Fusion. Micromachines 2022, 13, 1977. [Google Scholar] [CrossRef]
- Man, C.; Dong, C.F.; Kong, D.C.; Wang, L.; Li, X.G. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel. Corros. Sci. 2019, 151, 108–121. [Google Scholar] [CrossRef]
- Lei, X.W.; Feng, Y.R.; Zhang, J.X.; Fu, A.Q.; Yin, C.X.; Macdonald, D.D. Impact of Reversed Austenite on the Pitting Corrosion Behavior of Super 13Cr Martensitic Stainless Steel. Electrochim. Acta 2016, 191, 640–650. [Google Scholar] [CrossRef]
- Lima, V.X.; Barros, I.F.; De Abreu, H.F.G. Influence of Solution Annealing on Microstructure and Mechanical Properties of Maraging 300 Steel. Mater. Res. 2017, 20, 10–14. [Google Scholar] [CrossRef]
- Pardal, J.M.; Tavares, S.S.M.; Fonseca, M.P.C.; da Silva, M.R.; Neto, J.M.; Abreu, H.F.G. Influence of temperature and aging time on hardness and magnetic properties of the maraging steel grade 300. J. Mater. Sci. 2007, 42, 2276–2281. [Google Scholar] [CrossRef]
- Kumar, S.; Bablu, M.; Janghela, S.; Misra, M.K.; Mishra, R.; Ranjan, A.; Prasad, N.E. Factorial design, processing, characterization and microstructure analysis of PIP-based C/SiC composites. Bull. Mater. Sci. 2018, 41, 17. [Google Scholar] [CrossRef]
- Srinivasan, P.M.; Dharmakkan, N.; Vishnu, M.D.S.; Prasath, H.; Gogul, R. Thermal conductivity analysis of Al2O3/water-ethylene glycol nanofluid by using factorial design of experiments in a natural convection heat transfer apparatus. Hem. Ind. 2021, 75, 341–352. [Google Scholar] [CrossRef]
- Nassif, N.; Zeiada, W.; Al-Khateeb, G.; Haridy, S.; Altoubat, S. Assessment of Punching Shear Strength of Fiber-reinforced Concrete Flat Slabs Using Factorial Design of Experiments. Jordan J. Civ. Eng. 2022, 16, 139–154. [Google Scholar]
- Mouelhi, M.; Marzouk, I.; Hamrouni, B. Optimization studies for water defluoridation by adsorption: Application of a design of experiments. Desalination Water Treat. 2016, 57, 9889–9899. [Google Scholar] [CrossRef]
- Maskovic, M.; Jancic-Stojanovic, B.; Malenovic, A.; Ivanovic, D.; Medenica, M. Assessment of Liquid Chromatographic Method Robustness by Use of Plackett-Burman Design. Acta Chromatogr. 2010, 22, 281–296. [Google Scholar] [CrossRef]
- Nurulhuda, A.; Hafrzzal, Y.; Izzuddin, M.Z.M.; Sulawati, M.R.N.; Rafidah, A.; Suhaila, Y.; Fauziah, A.R. Analysis on Flexural Strength of A36 Mild Steel by Design of Experiment (DOE). In Proceedings of the International Research and Innovation Summit (IRIS), Melaka, Malaysia, 6–7 May 2017. [Google Scholar]
- ASTM G59-23; Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- Yan, X.; Chen, C.; Chang, C.; Dong, D.; Zhao, R.; Jenkins, R.; Wang, J.; Ren, Z.; Liu, M.; Liao, H.; et al. Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM). Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2020, 781, 139227. [Google Scholar] [CrossRef]
- Yin, S.; Chen, C.; Yan, X.; Feng, X.; Jenkins, R.; O’Reilly, P.; Liu, M.; Li, H.; Lupoi, R. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit. Manuf. 2018, 22, 592–600. [Google Scholar] [CrossRef]
- Jaegle, E.A.; Sheng, Z.; Kuernsteiner, P.; Ocylok, S.; Weisheit, A.; Raabe, D. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing. Materials 2017, 10, 8. [Google Scholar] [CrossRef]
- Shamantha, C.R.; Narayanan, R.; Iyer, K.J.L.; Radhakrishnan, V.M.; Seshadri, S.K.; Sundararajan, S.; Sundaresan, S. Microstructural changes during welding and subsequent heat treatment of 18Ni (250-grade) maraging steel. Mater. Sci. Eng. A 2000, 287, 43–51. [Google Scholar] [CrossRef]
- Kempen, K.; Yasa, E.; Thijs, L.; Kruth, J.P.; Van Humbeeck, J. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys. Procedia 2011, 12, 255–263. [Google Scholar] [CrossRef]
- Gao, P.; Jing, G.; Lan, X.; Li, S.; Zhou, Y.; Wang, Y.; Yang, H.; Wei, K.; Wang, Z. Effect of heat treatment on microstructure and mechanical properties of Fe–Cr–Ni–Co–Mo maraging stainless steel produced by selective laser melting. Mater. Sci. Eng. A 2021, 814, 141149. [Google Scholar] [CrossRef]
- Tewari, R.; Mazumder, S.; Batra, I.S.; Dey, G.K.; Banerjee, S. Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 2000, 48, 1187–1200. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Moller, H.; Zanella, C. Studying the Microstructural Effect of Selective Laser Melting and Electropolishing on the Performance of Maraging Steel. J. Mater. Eng. Perform. 2021, 30, 6588–6605. [Google Scholar] [CrossRef]
- Jiang, Y.; Ai, Y.; Wang, Q. Study on Corrosion Resistance of 00Cr13Ni7Co5Mo4W Maraging Stainless Steel in Seawater. Mech. Eng. Mater. Sci. Civ. Eng. 2013, 274, 402–405. [Google Scholar] [CrossRef]
- El-Mahdy, G.A.; Hegaz, M.M.Y.; Heakal, F.E.-T.; Mahmoud, H.E.; Fathy, A.M.; Sayed, F.M. Electrochemical Behavior of Maraging Steel in Chloride Containing Environment. Int. J. Electrochem. Sci. 2013, 8, 2816–2825. [Google Scholar] [CrossRef]
Ni | Co | Mo | Ti | Al | Fe |
---|---|---|---|---|---|
18.0 | 9.0 | 5.0 | 0.7 | 0.1 | Balance |
Factors | Levels | |||
---|---|---|---|---|
Code | Factors Description | Units | Level −1 | Level +1 |
A | Aging temperature | °C | 460 | 520 |
B | Holding time | h | 2 | 8 |
C | Number of treatments | -- | 1 | 2 |
Experiment | A | B | C | Restricted Confusion Pattern |
---|---|---|---|---|
Aging Temp. (°C) | Holding Time (h) | Number of Treatments | ||
1 | 460 | 2 | 1 | Factor A Factor B Factor C Interaction AB Interaction AC Interaction BC |
2 | 520 | 2 | 1 | |
3 | 460 | 8 | 1 | |
4 | 520 | 8 | 1 | |
5 | 460 | 2 | 2 | |
6 | 520 | 2 | 2 | |
7 | 460 | 8 | 2 | |
8 | 520 | 8 | 2 |
Experiment | Block 1 | Block 2 | Effect | Confounding Pattern |
---|---|---|---|---|
1 | 568 | 572 | 575.9 | Average |
2 | 564 | 566 | −44.7 | Factor A |
3 | 604 | 604 | −2.7 | Factor B |
4 | 550 | 546 | 8.2 | Factor C |
5 | 602 | 604 | −26.2 | Interaction AB |
6 | 572 | 570 | −14.2 | Interaction AC |
7 | 614 | 618 | −11.2 | Interaction BC |
8 | 532 | 528 | 0.25 | Block |
Experiment | Block 1 | Block 2 | Effect | Confounding Pattern |
---|---|---|---|---|
1 | 1842 | 1840 | 2015.8 | Average |
2 | 2059 | 2048 | 24.8 | Factor A |
3 | 2058 | 2071 | 69.1 | Factor B |
4 | 2079 | 2025 | 26.1 | Factor C |
5 | 1962 | 1971 | −130.1 | Interaction AB |
6 | 2040 | 2088 | −75.1 | Interaction AC |
7 | 2142 | 2141 | −41.8 | Interaction BC |
8 | 1956 | 1931 | −2.8 | Block |
Experiment | Block 1 | Block 2 | Effect | Confounding Pattern |
---|---|---|---|---|
1 | 5.2 | 6.1 | 6.2 | Average |
2 | 6.0 | 6.3 | −0.2 | Factor A |
3 | 6.5 | 6.8 | 0.3 | Factor B |
4 | 6.4 | 5.7 | 0.2 | Factor C |
5 | 6.0 | 6.5 | −0.4 | Interaction AB |
6 | 5.7 | 6.6 | −0.2 | Interaction AC |
7 | 6.8 | 6.9 | −0.1 | Interaction BC |
8 | 6.1 | 6.0 | 0.3 | Block |
Experiment | Rietveld Fitting | wt.% |
---|---|---|
“As print” | Rwp = 12.5 Chi2 = 3.49 | 0 |
1 | Rwp = 12.4 Chi2 = 2.78 | 0 |
2 | Rwp = 15.9 Chi2 = 1.91 | 1 |
3 | Rwp = 13.1 Chi2 = 2.25 | 0 |
4 | Rwp = 12.5 Chi2 = 2.27 | 5 |
5 | Rwp = 15.3 Chi2 = 2.13 | 2 |
6 | Rwp = 14.6 Chi2 = 2.07 | 4 |
7 | Rwp = 12.7 Chi2 = 2.39 | 1 |
8 | Rwp = 14.1 Chi2 = 2.09 | 8 |
Sample | Rp (kΩ) | Ecorr (V vs. Ag/AgCl) | Icorr (μA/cm2) |
---|---|---|---|
As-printed | 8.24 | −0.573 | 6.4 |
Experiment 7 | 9.33 | −0.605 | 5.0 |
Experiment 8 | 13.75 | −0.613 | 4.2 |
Over-aged (96 h at 520 °C) | 15.53 | −0.610 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Gonzalo, I.; González-Pociño, A.; Alvarez-Antolin, F.; del Rio-Fernández, L. Analysis of a Double Aging Process in a Maraging 300 Steel Fabricated by Selective Laser Melting, Using the Design of Experiments Technique. Metals 2023, 13, 1700. https://doi.org/10.3390/met13101700
Pérez-Gonzalo I, González-Pociño A, Alvarez-Antolin F, del Rio-Fernández L. Analysis of a Double Aging Process in a Maraging 300 Steel Fabricated by Selective Laser Melting, Using the Design of Experiments Technique. Metals. 2023; 13(10):1700. https://doi.org/10.3390/met13101700
Chicago/Turabian StylePérez-Gonzalo, Inés, Alejandro González-Pociño, Florentino Alvarez-Antolin, and Laura del Rio-Fernández. 2023. "Analysis of a Double Aging Process in a Maraging 300 Steel Fabricated by Selective Laser Melting, Using the Design of Experiments Technique" Metals 13, no. 10: 1700. https://doi.org/10.3390/met13101700
APA StylePérez-Gonzalo, I., González-Pociño, A., Alvarez-Antolin, F., & del Rio-Fernández, L. (2023). Analysis of a Double Aging Process in a Maraging 300 Steel Fabricated by Selective Laser Melting, Using the Design of Experiments Technique. Metals, 13(10), 1700. https://doi.org/10.3390/met13101700