Numerical Analysis of Factors Affecting the Burden Surface and Porosity Distribution in the Upper Part of the Blast Furnace
Abstract
:1. Introduction
2. Methodology
2.1. Discrete Element Method
2.2. System Studied
3. Results and Discussion
3.1. Static Friction Coefficient between Particles
3.2. Shaft Angle
4. Conclusions
- (1)
- The static friction coefficient between particles affects the radial porosity distribution of the burden layers in the throat. With an increase in the coefficient, more particles stay at the platform or upper slope rather than moving to the funnel part, especially for small particles.
- (2)
- An increased burden particle roughness will make the porosity drop in the mixed layers less pronounced. This will improve the gas permeability of the blast furnace.
- (3)
- The burden surface shape becomes flatter with an increase in the shaft angle. The shaft angle of the BF also affects the burden distribution and porosity of the burden bed at the position of the turning point from the BF throat to the shaft for the region close to the wall.
- (4)
- A properly chosen shaft angle can make the burden distribution more uniform and reduce the change of the porosity distribution during burden descent, but the angle has naturally other effects of the BF performance that also should be considered.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurunov, I.F. The blast-furnace process—Is there any alternative? Metallurgist 2012, 56, 241–246. [Google Scholar] [CrossRef]
- Nie, H.; Li, Z.; Kuang, S.; Yan, L.; Zhong, W.; Yu, A.; Mao, X.; Xu, H. Numerical investigation of oxygen-enriched operations in blast furnace ironmaking. Fuel 2021, 296, 120662. [Google Scholar] [CrossRef]
- Lan, C.; Hao, Y.; Shao, J.; Zhang, S.; Liu, R.; Lyu, Q. Effect of H2 on blast furnace ironmaking: A review. Metals 2022, 12, 1864. [Google Scholar] [CrossRef]
- Qie, Y.N.; Lyu, Q.; Lan, C.C.; Zhang, S.H.; Liu, R. Effect of H2 addition on process of primary slag formation in cohesive zone. J. Iron Steel Res. Int. 2019, 27, 132–140. [Google Scholar] [CrossRef]
- Seo, M.W.; Jeong, H.M.; Lee, W.J.; Sang, J.Y.; Sang, M.J. Carbonization characteristics of biomass/coking coal blends for the application of bio-coke. Chem. Eng. J. 2020, 394, 124943. [Google Scholar] [CrossRef]
- Yang, Y.L.; Yin, Y.; Wunsch, D.; Zhang, S.; Chen, X.D.; Li, X.; Cheng, S.S.; Wu, M.; Liu, K.Z. Development of blast furnace burden distribution process modeling and control. ISIJ Int. 2017, 57, 1350–1363. [Google Scholar] [CrossRef] [Green Version]
- Geerdes, M.; Chaigneau, R.; Lingiardi, O.; Molenaar, R.; Opbergen, R.; Sha, Y.; Warren, P. Modern Blast Furnace Ironmaking: An Introduction, 4th ed.; IOS Press: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Fu, D.; Chen, Y.; Zhou, C.Q. Mathematical modeling of blast furnace burden distribution with non-uniform descending speed. Appl. Math. Model. 2015, 39, 7554–7567. [Google Scholar] [CrossRef]
- Hinnelä, J.; Saxén, H.; Pettersson, F. Modeling of the blast furnace burden distribution by evolving neural networks. Ind. Eng. Chem. Res. 2003, 42, 2314–2323. [Google Scholar] [CrossRef]
- Liu, S.D.; Zhou, Z.Y.; Dong, K.J.; Yu, A.B.; Pinson, D.; Tsalapatis, J. Numerical investigation of burden distribution in a blast furnace. Steel Res. Int. 2015, 86, 651–661. [Google Scholar] [CrossRef]
- Król, L.; Krzaklewski, M.; Olek, T.; Woźniacki, W. Identification of burden distribution parameters in shaft and throat of the blast furnace. Steel Res. 1988, 59, 146–152. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, J.L.; Hong, Z.B.; Wang, L.P.; Wu, S.L.; Kou, M.Y.; Wang, G.W.; Luo, Y.W. Numerical simulation of coke collapse and its optimization during burden charging at the top of bell-less blast furnace. Powder Technol. 2021, 389, 155–162. [Google Scholar] [CrossRef]
- Rankin, W.; Roller, P. The measurement of void fraction in beds of granulated iron ore sinter feed. Trans. Iron Steel Inst. Jpn. 1985, 25, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Ding, W.T.; Li, Y.; Nie, H.; Saxén, H.; Long, H.M.; Yu, Y.W. Porosity distribution of moving burden layers in the blast furnace throat. Granul. Matter 2021, 23, 10. [Google Scholar] [CrossRef]
- Li, C.Z.; Honeyands, T.; O’Dea, D.; Moreno-Atanasio, R. DEM study on size segregation and voidage distribution in green bed formed on iron ore sinter strand. Powder Technol. 2019, 356, 778–789. [Google Scholar] [CrossRef]
- Kawata, Y.; Kusaka, T.; Inoue, K.; Imada, H.; Miyakawa, H. An FM radar based on a new phase modulation method for burden level measurement in blast furnace. Trans. Soc. Instrum. Control Eng. 1986, 22, 1189–1195. [Google Scholar] [CrossRef]
- Zhu, Q.; Lu, C.L.; Yin, Y.X.; Chen, X.Z. Burden distribution calculation of bell-less top of blast furnace based on multi-radar data. J. Iron Steel Res. Int. 2013, 20, 33–37. [Google Scholar] [CrossRef]
- Kelly, J.R.; Wei, J.D.; Chen, X.Z.; Cui, Y.Z. Blast furnace stockline measurement using radar. Ironmak. Steelmak. Prod. Appl. 2015, 42, 533–541. [Google Scholar]
- Li, M.; Wei, H.; Ge, Y.; Xiao, G.C.; Yu, Y.W. A mathematical model combined with radar data for bell-less charging of a blast furnace. Processes 2020, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Zhang, W. Research on the blast furnace charge position tracking based on machine learning regression model. In Proceedings of the 10th International Conference on Modelling, Identification and Control (ICMIC), Guiyang, China, 2–4 July 2018. [Google Scholar]
- Saxén, H.; Nikus, M.; Hinnelä, J. Burden distribution estimation in the blast furnace from stockrod and probe signals. Steel Res. 1998, 69, 406–412. [Google Scholar] [CrossRef]
- Hinnelä, J.; Saxén, H. Neural network model of burden layer formation dynamics in the blast furnace. ISIJ Int. 2001, 41, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Shi, P.Y.; Song, Y.P.; Tang, K.L.; Fu, D.; Zhou, C. Evaluation of burden descent model for burden distribution in blast furnace. J. Iron Steel Res. Int. 2016, 23, 765–771. [Google Scholar] [CrossRef]
- Radhakrishnan, V.R.; Ram, K.M. Mathematical model for predictive control of the bell-less top charging system of a blast furnace. J. Process Control 2001, 11, 565–586. [Google Scholar] [CrossRef]
- Nag, S.; Koranne, V. Development of material trajectory simulation model for blast furnace compact bell-less top. Ironmak. Steelmak. 2009, 36, 371–378. [Google Scholar] [CrossRef]
- Cundall, P.; Strack, O. A discrete numerical mode for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Dong, X.; Yu, A.B.; Yagi, J.I.; Zulli, P. Modelling of multiphase flow in a blast furnace: Recent developments and future work. ISIJ Int. 2007, 47, 1553–1570. [Google Scholar] [CrossRef] [Green Version]
- Ueda, S.; Natsui, S.; Nogami, H.; Yagi, J.I.; Ariyama, T. Recent progress and future perspective on mathematical modeling of blast furnace. ISIJ Int. 2010, 50, 914–923. [Google Scholar] [CrossRef] [Green Version]
- Kuang, S.; Li, Z.; Yu, A. Review on modelling and simulation of blast furnace. Steel Res. Int. 2018, 89, 1700071. [Google Scholar] [CrossRef]
- Kou, M.; Shengli, W.U.; Kaiping, D.U.; Shen, W.; Sun, J.; Zhang, Z. DEM simulation of burden distribution in the upper part of COREX shaft furnace. ISIJ Int. 2013, 53, 1002–1009. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.K.; Wu, S.M.; Zhu, H.P.; Yu, A.B.; Tsai, S.T. Experimental and numerical investigations of gouge formation related to blast furnace burden distribution. Miner. Eng. 2009, 22, 986–994. [Google Scholar] [CrossRef]
- Fukushima, T.; Nishio, H.; Ohno, Y.; Furukawa, T.; Izawa, T. Importance of Burden Distribution Control and Inner State of the Blast Furnace, Symposium on Optimum Burden Distribution in the Blast Furnace; McMaster University Press: Hamilton, ON, Canada, 1978; pp. 7.1–7.14. [Google Scholar]
- Tsotsas, E.; Schlünder, E.U. Heat transfer in packed beds with fluid flow: Remarks on the meaning and the calculation of a heat transfer coefficient at the wall. Chem. Eng. Sci. 1990, 45, 819–837. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Xu, B.H.; Yu, A.B.; Zulli, P. An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 2002, 125, 45–54. [Google Scholar] [CrossRef]
- Rojek, J.; Zarate, F.; Saracibar, C.; Gilbourne, C.; Verdot, P. Discrete element modelling and simulation of sand mould manufacture for the lost foam process. Int. J. Numer. Methods Eng. 2005, 62, 1421–1441. [Google Scholar] [CrossRef]
- Wensrich, C.; Katterfeld, A. Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 2012, 217, 409–417. [Google Scholar] [CrossRef]
- Wei, H.; Li, M.; Li, Y.; Ge, Y.; Saxen, H.; Yu, Y.W. Discrete element method (DEM) and experimental studies of the angle of repose and porosity distribution of pellet pile. Processes 2019, 7, 561. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Zan, L.; Li, Y.; Wang, Z.; Saxén, H.; Yu, Y. Numerical and experimental studies of corn particle properties on the forming of pile. Powder Technol. 2017, 321, 533–543. [Google Scholar] [CrossRef]
- Zhang, S.J.; Yu, A.B.; Zulli, P.; Wright, B.; Austin, P. Numerical simulation of solids flow in a blast furnace. Appl. Math. Model. 2002, 26, 141–154. [Google Scholar] [CrossRef]
- Nishio, H.; Ariyama, T. Analysis on formation processes of burden distribution in blast furnace. Tetsu-to-Hagane 1982, 68, 2330–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, D.; Huang, F.; Tian, F.; Zhou, C. Burden descending and redistribution in a blast furnace. In Proceedings of the Association for Iron & Steel Technology Conference, Pittsburgh, PA, USA, 3–6 May 2010. [Google Scholar]
- Di Renzo, A.; Di Maio, F.P. An improved integral non-linear model for the contact of particles in distinct element simulations. Chem. Eng. Sci. 2005, 60, 1303–1312. [Google Scholar] [CrossRef]
- Hertz, H. Ueber die Berührung fester elastischer Körper. J. Reine Angew. Math. 1882, 1882, 156–171. [Google Scholar] [CrossRef]
- Soda, R.; Sato, A.; Kano, J.; Kasai, E.; Saito, F.; Hara, M.; Kawaguchi, T. Analysis of granules behavior in continuous drum mixer by DEM. ISIJ Int. 2009, 49, 645–649. [Google Scholar] [CrossRef] [Green Version]
- Nakano, M.; Abe, T.; Kano, J.; Kunitomo, K. DEM analysis on size segregation in feed bed of sintering machine. ISIJ Int. 2012, 52, 1559–1564. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Saxén, H. Segregation behavior of particles in a top hopper of a blast furnace. Powder Technol. 2014, 262, 233–241. [Google Scholar] [CrossRef]
- Barrios, G.K.P.; De Carvalho, R.M.; Kwade, A.; Tavares, L.M. Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol. 2013, 248, 84–93. [Google Scholar] [CrossRef]
- Wei, H.; Nie, H.; Li, Y.; Saxén, H.; He, Z.J.; Yu, Y.W. Measurement and simulation validation of DEM parameters of pellet, sinter and coke particles. Powder Technol. 2020, 364, 593–603. [Google Scholar] [CrossRef]
- Mitra, T.; Saxén, H. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace. Comput. Part. Mech. 2016, 3, 541–555. [Google Scholar] [CrossRef]
- Ichida, M.; Anan, K.; Takao, M.; Kakiuchi, K.; Morizane, Y.; Yamada, I.; Nakayama, T. Inner profile and burden descent behavior in the blast furnace. Tianjin Metal. 2006, 384, 80–86. [Google Scholar]
Model Type | Particle Size | Sinter | Coke | ||||
---|---|---|---|---|---|---|---|
Throat (slot) model | Particle number | 9.3 × 104 | |||||
Diameter (mm) | 3 | 6 | 11 | 6 | 10 | 15 | |
Mass ratio (%) | 11.8 | 14.7 | 73.5 | 30 | 20 | 50 | |
Shaft (3D) model | Particle number | 5 × 104 | |||||
Diameter (mm) | 3 | 6 | 11 | 6 | 10 | 15 | |
Mass ratio (%) | 40 | 20 | 40 | 30 | 20 | 50 |
Parameters | Value |
---|---|
Time step (s) | 1 × 10−5 |
Coke | |
Particle density (kg/m3) | 1050 |
Young’s modulus (Pa) | 5.4 × 108 |
Poisson’s ratio | 0.22 |
Interparticle restitution coefficient | 0.39 |
Interparticle static friction coefficient | 0.30 |
Interparticle rolling friction coefficient | 0.25 |
Sinter | |
Particle density (kg/m3) | 4837 |
Young’s modulus (Pa) | 3.5 × 109 |
Poisson’s ratio | 0.25 |
Interparticle restitution coefficient | 0.35 |
Interparticle static friction coefficient | 0.40 |
Interparticle rolling friction coefficient | 0.30 |
Sinter–coke Interparticle restitution coefficient | 0.25 |
Interparticle static friction coefficient | 0.30 |
Interparticle rolling friction coefficient | 0.25 |
Wall | |
Young’s modulus (Pa) | 1 × 108 |
Poisson’s ratio | 0.40 |
Coke–wall | |
Restitution coefficient | 0.20 |
Static friction coefficient | 0.20 |
Rolling friction coefficient | 0.10 |
Sinter–wall | |
Restitution coefficient | 0.20 |
Static friction coefficient | 0.30 |
Rolling friction coefficient | 0.15 |
Static Friction Coefficient | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 |
---|---|---|---|---|---|
sinter–coke | 0.1 | 0.3 | 0.5 | 0.4 | 0.4 |
sinter–sinter | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 |
coke–coke | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Saxén, H.; Yu, Y. Numerical Analysis of Factors Affecting the Burden Surface and Porosity Distribution in the Upper Part of the Blast Furnace. Metals 2023, 13, 292. https://doi.org/10.3390/met13020292
Wei H, Saxén H, Yu Y. Numerical Analysis of Factors Affecting the Burden Surface and Porosity Distribution in the Upper Part of the Blast Furnace. Metals. 2023; 13(2):292. https://doi.org/10.3390/met13020292
Chicago/Turabian StyleWei, Han, Henrik Saxén, and Yaowei Yu. 2023. "Numerical Analysis of Factors Affecting the Burden Surface and Porosity Distribution in the Upper Part of the Blast Furnace" Metals 13, no. 2: 292. https://doi.org/10.3390/met13020292
APA StyleWei, H., Saxén, H., & Yu, Y. (2023). Numerical Analysis of Factors Affecting the Burden Surface and Porosity Distribution in the Upper Part of the Blast Furnace. Metals, 13(2), 292. https://doi.org/10.3390/met13020292