Optimization Study of Annular Wear-Resistant Layer Structure for Blast Furnace Tuyere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of a 3D Model of the Tuyere Small Sleeve
- (1)
- The steady-state heat conduction is adopted in the heat transfer process of the tuyere small sleeve.
- (2)
- There is no gap between the working surface of the tuyere and the wear-resistant coating, which is conducive to focusing on the structural changes.
- (3)
- It is assumed that the physical properties of the materials are fixed, and the thermal conductivity of the materials is constant in the x, y, and z directions. The physical property parameters used in this paper are shown in Table 1, and the physical property parameters of the coating are selected from common surfacing wear-resistant materials in the literature [17,22].
2.2. Establishment of a 3D Model of the Tuyere Small Sleeve
2.3. Mesh Processing
2.4. Structural Optimization Simulation Scheme
3. Results and Discussion
3.1. Investigation of the Influence of Annular Wear-Resistant Layer Opening Width
3.2. Study on the Influence of Different Parameters on the New Type of Tuyere
3.3. Simulation of Stress Field in Annular Wear-Resistant Layer Structure Tuyere
4. Conclusions
- (1)
- The design of an annular wear-resistant layer for the tuyere small sleeve is effective. The simulation results demonstrate that the optimal width for the annular wear-resistant layer is between 5 mm and 10 mm, which can reduce the coating temperature by 24 K. This design can reduce heat loss in the tuyere area of the blast furnace by 16.7%, providing new technological solutions for low-carbon production. The annular wear-resistant layer design for the tuyere presents a potential economic benefit by reducing the coke ratio by 0.78 kg/t (ton of iron).
- (2)
- The copper base of the annular wear-resistant layer tuyere small sleeve remains stable under different conditions, and the 10 mm-width annular wear-resistant layer tuyere small sleeve is within a safe temperature range when the blast furnace environment temperature is below 2273 K.
- (3)
- The simulation results of the stress field indicate that the stress is concentrated at the edge of the coating for the tuyere small sleeve with the annular wear-resistant layer structure. The overall stress of the coating is lower than that of the fully covered coated tuyere small sleeve, and the maximum thermal stress is reduced by 31.5%. The design of the annular wear-resistant layer is beneficial for extending the service life of the coating, thereby extending the service life of the tuyere small sleeve.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, J.-K.; Hur, N.-S. Tuyere Level Coke Characteristics in Blast Furnace with Pulverized Coal Injection. ISIJ Int. 1997, 37, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.L.; Jiao, K.X.; Ma, H.B.; Zhang, J.L. Analysis of tuyere failure categories in 5800 m3 blast furnace. Ironmak. Steelmak. 2020, 48, 586–591. [Google Scholar] [CrossRef]
- Gao, T.; Jiao, K.; Zhang, J.; Ma, H. Melting Erosion failure mechanism of tuyere in blast furnace. ISIJ Int. 2021, 61, 71–78. [Google Scholar] [CrossRef]
- Farkas, O.; Móger, R. Metallographic aspects of Blast Furnace tuyere erosion processes. Steel Res. Int. 2013, 84, 1171–1178. [Google Scholar] [CrossRef]
- Portnov, L.V.; Nikitin, L.D.; Bugaev, S.F.; Shchipitsyn, V.G. Improving the durability of blast-furnace tuyeres. Metallurgist 2014, 58, 488–491. [Google Scholar] [CrossRef]
- You, Y.; Zheng, Z.; Wang, R.; Hu, Q.; Li, Y.; You, Z. Numerical Study on Combustion Behavior of Semi-Coke in Blast Furnace Blowpipe-Tuyere-Combustion Zone. Metals 2022, 12, 1272. [Google Scholar] [CrossRef]
- Goloshchapov, K.V.; Kobelev, O.A.; Titlyanov, A.E.; Borisov, P.V.; Makarov, P.S.; Chicheneva, O.N. Improvement of the function of blast-furnace air tuyeres. Metallurgist 2022, 66, 215–220. [Google Scholar] [CrossRef]
- Zainullin, L.A.; Epishin, A.Y.; Spirin, N.A. Extending the life of blast-furnace air tuyeres. Metallurgist 2018, 62, 322–325. [Google Scholar] [CrossRef]
- Chatterjee, R.; Nag, S.; Kundu, S.; Ghosh, U.; Singh, U.; Chandra, S. Impact of flow boiling on blast furnace tuyere life: A designer’s perspective. Steel Res. Int. 2022, 93, 12. [Google Scholar] [CrossRef]
- Chatterjee, R.; Nag, S.; Kundu, S.; Chakraborty, R.; Singh, U.; Chandra, S. Erosion behavior of blast furnace tuyere. ISIJ Int. 2019, 59, 1732–1734. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, R.; Nag, S.; Kundu, S.; Ghosh, U.; Padmapal; Singh, U. A journey towards improving tuyere life. Trans. Indian Inst. Met. 2021, 74, 1077–1088. [Google Scholar] [CrossRef]
- Guo, X.P.; Han, W.Y. The numerical simulation analysis of tuyere’s temperature field and stress field. Adv. Mater. Res. 2013, 706, 1701–1704. [Google Scholar] [CrossRef]
- Radyuk, G.; Titlyanov, A.E.; Sidorova, T.Y. Effect of slurry coating on the resistance of thermal insulation insert in blast furnace air tuyere. Metallurgist 2020, 63, 1153–1159. [Google Scholar] [CrossRef]
- Tarasov, Y.S.; Skripalenko, M.M.; Radyuk, A.G.; Titlyanov, A.E. Effect of the thermal insulation of the inner wall on the thermal condition of the air tuyeres of blast furnaces. Metallurgist 2018, 61, 745–750. [Google Scholar] [CrossRef]
- Tarasov, Y.S.; Skripalenko, M.M.; Radyuk, A.G.; Titlyanov, A.E. Computer simulation of thermal and stress-strain state of blast furnace tuyeres. Metallurgist 2019, 62, 1083–1091. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R.; Hu, R.; Zhang, C.; Li, G.; Zhang, Y.; Wu, W.; Lu, X. Failure mode and mechanism of a blast furnace tuyere. Eng. Fail. Anal. 2022, 137, 106294. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Zhang, J.; Zhang, Y.; Wu, W.; Li, G.; Lu, X. Temperature field simulation of Ni60A coating with different copper content on blast furnace tuyere. Mater. Today Commun. 2022, 32, 104093. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Wang, R.; Zhang, J.; Hu, R.; Zhang, Y.; Li, G.; Lu, X. Microstructure and properties evolution of Co06/Ni60A duplex coating on copper by plasma cladding. Surf. Coat. Technol. 2021, 429, 127978. [Google Scholar] [CrossRef]
- Titov, V.N.; Ternovikh, A.I.; Baranov, P.V.; Sidorova, T.Y. Development of coatings for protection of blast furnace air tuyeres. Metallurgist 2021, 65, 439–445. [Google Scholar] [CrossRef]
- Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S.V. Thermal spray coatings for blast furnace tuyere application. J. Therm. Spray Technol. 2015, 24, 1429–1440. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, S. Heat transfer and thermal deformation analyses of a copper stave used in the belly and lower shaft area of a blast furnace. Int. J. Therm. Sci. 2015, 100, 202–212. [Google Scholar] [CrossRef]
- Shmorgun, V.G.; Bogdanov, A.I.; Taube, A.O.; Kulevich, V.P. Evaluation of heat resistance and thermal conductivity of Ni–Cr–Al system layered coatings. Metallurgist 2022, 66, 934–941. [Google Scholar] [CrossRef]
- Titov, V.N.; Saifullaev, S.D.; Skripalenko, M.M.; Ternovykh, A.I.; Sidorov, A.A. Using DEFORM-2D software to study heat-insulation materials as protection of air tuyeres against burnout. Metallurgist 2020, 64, 388–395. [Google Scholar] [CrossRef]
- Radyuk, A.G.; Titlyanov, A.E.; Skripalenko, M.M.; Stoishich, S.S. Modeling of the temperature field of air tuyeres in the blast furnaces with thermal insulation of the nose portion. Metallurgist 2018, 62, 310–313. [Google Scholar] [CrossRef]
- Radyuk, A.G.; Titlyanov, A.E.; Skripalenko, M.M. Modeling of the temperature field of blast furnace tuyeres using Deform-2D software. Metallurgist 2017, 60, 1011–1015. [Google Scholar] [CrossRef]
- Shen, Y.-S.; Liu, Z.-M.; Zhu, T.; Yan, F.-S.; Xin, H.-N.; Sun, R.-L. The new technology and the partial thermotechnical computation for air-cooled blast furnace tuyere. Appl. Therm. Eng. 2009, 29, 1232–1238. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, H.; Si, Y.; Li, S.; Ji, P.; Wu, J.; Zhang, J.; Wu, S.; Kou, M. Numerical analysis of natural gas injection in shougang jingtang blast furnace. Metals 2022, 12, 2107. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, P.; Cheng, S.; Niu, J.; Liu, D. Heat transfer and thermo-elastic analysis of copper steel composite stave. Int. J. Heat Mass Transf. 2016, 103, 341–348. [Google Scholar] [CrossRef]
- Wu, L.; Xu, X.; Zhou, W.; Su, Y.; Li, X. Heat transfer analysis of blast furnace stave. Int. J. Heat Mass Transf. 2008, 51, 2824–2833. [Google Scholar] [CrossRef]
- Zasadzińska, M.; Knych, T.; Strzępek, P.; Jurkiewicz, B.; Franczak, K. Analysis of the strengthening and recrystallization of electrolytic copper (Cu-ETP) and oxygen free copper (Cu-OF). Arch. Civ. Mech. Eng. 2018, 19, 186–193. [Google Scholar] [CrossRef]
Location | Material | Density (kg·m−3) | Thermal Conductivity (W·m−1·K−1) | Heat Capacity (J·kg−1·K−1) |
---|---|---|---|---|
the tuyere front-end | Copper | 8920 | 338 | 381 |
the deflector | Steel | 8030 | 16.27 | 502 |
the tuyere body | Copper | 8880 | 178 | 381 |
Wear-resistant layer | Nickel-based | 8400 | 25 | 440 |
cooling medium | Water | 998.2 | 0.6 | 4182 |
Programme | Layer Width | Layer Thickness | Layer Thermal Conductivity | Water Flow Rate | Ambient Temperature |
---|---|---|---|---|---|
Case1 | Uncoated | - | - | * | * |
Case2 | 5 mm | * | * | * | * |
Case3 (*) | 10 mm | 2 | 25 | 33 | 2273 |
Case4 | 15 mm | * | * | * | * |
Case5 | 20 mm | * | * | * | * |
Case6 | Full coating | * | * | * | * |
Case7 | * | * | * | 25 | * |
Case8 | * | * | * | 30 | * |
Case9 | * | * | * | 35 | * |
Case10 | * | * | * | * | 2073 |
Case11 | * | * | * | * | 2473 |
Case12 | * | 1 | * | * | * |
Case13 | * | 3 | * | * | * |
Case14 | * | * | 10 | * | * |
Case15 | * | * | 50 | * | * |
Different Case | Back-End Water Temperature Difference (K) | Front-End Water Temperature Difference (K) | Heat Flux Density (kW/m2) |
---|---|---|---|
full coating | 2.41 | 3.15 | 208.96 |
5 mm | 2.79 | 3.22 | 225.87 |
10 mm | 2.88 | 3.26 | 230.76 |
15 mm | 2.98 | 3.26 | 236.02 |
20 mm | 3.02 | 3.48 | 244.29 |
Uncoated | 3.77 | 3.60 | 276.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Zhang, J.; Zong, Y.; Zhang, L.; Liu, Y.; Yan, L.; Jiao, K. Optimization Study of Annular Wear-Resistant Layer Structure for Blast Furnace Tuyere. Metals 2023, 13, 1109. https://doi.org/10.3390/met13061109
Zhu W, Zhang J, Zong Y, Zhang L, Liu Y, Yan L, Jiao K. Optimization Study of Annular Wear-Resistant Layer Structure for Blast Furnace Tuyere. Metals. 2023; 13(6):1109. https://doi.org/10.3390/met13061109
Chicago/Turabian StyleZhu, Wentao, Jianliang Zhang, Yanbing Zong, Lei Zhang, Yanxiang Liu, Lifeng Yan, and Kexin Jiao. 2023. "Optimization Study of Annular Wear-Resistant Layer Structure for Blast Furnace Tuyere" Metals 13, no. 6: 1109. https://doi.org/10.3390/met13061109
APA StyleZhu, W., Zhang, J., Zong, Y., Zhang, L., Liu, Y., Yan, L., & Jiao, K. (2023). Optimization Study of Annular Wear-Resistant Layer Structure for Blast Furnace Tuyere. Metals, 13(6), 1109. https://doi.org/10.3390/met13061109