Multi-Objective Lightweight Optimization Design of the Aluminium Alloy Front Subframe of a Vehicle
Abstract
:1. Introduction
2. Multi-Condition Topology Optimization of the Aluminium Alloy front Subframe
3. Performance Analysis of the Aluminium Alloy Front Subframe
3.1. Strength Performance Analysis of the Aluminium Alloy Front Subframe
3.2. Static Stiffness Performance Analysis of the Aluminium Alloy Front Subframe
3.3. Free Modal Analysis of the Aluminium Alloy Front Subframe
4. Lightweight Optimization Design Based on Multi-Objective Methods
4.1. Establishment of the Parametric Model of the Aluminium Alloy Front Subframe
4.2. Establishment of the Optimization Mathematical Model
4.3. Experimental Design and Establishment of the Approximate Model
4.4. Multi-Objective Optimization of the Aluminium Alloy Front Subframe Based on the Approximate Model
5. Performance Analysis and Verification of the Aluminium Alloy Front Subframe after Optimization
5.1. Strength Performance Analysis of the Optimized Aluminium Alloy Front Subframe
5.2. Static Stiffness Performance Analysis of the Optimized Aluminium Alloy Front Subframe
5.3. Free Modal Performance Analysis of the Optimized Aluminium Alloy Front Subframe
5.4. Fatigue Life Analysis of the Optimized Aluminium Alloy Front Subframe
6. Test Analysis of the Aluminium Alloy Front Subframe Sample
6.1. Free Modal Test Analysis of the Aluminium Alloy Front Subframe
6.2. Fatigue Endurance Bench Test of the Aluminium Alloy Front Subframe
7. Conclusions
- The multi-operating condition topology optimization method is adopted to find the best stress path of the aluminium alloy front subframe, which prevents blindness in the design and development process of the aluminium alloy front subframe and can greatly shorten the development cycle.
- The response surface approximation model was constructed by using the optimal Latin Hypercube test method in the Isight software. Meanwhile, the multi-objective particle swarm optimization algorithm was used to carry out the multi-objective optimization design of the aluminium alloy front subframe. After 1002 iterations, the optimal structure of the aluminium alloy front subframe was obtained. After optimization, the maximum stress of the aluminium alloy front subframe corresponds to the extreme single-side pit condition, and the stress value is 179.3 MPa, which is 1.3 MPa less than that of 180.6 MPa before optimization. After optimization, the static stiffness values of each hard point of the aluminium alloy front subframe have little change, while the static stiffness values of some hard points remain unchanged. Under the premise of satisfying various performance indexes, the aluminium alloy front subframe loses 0.95 kg compared with the topology optimization, and 2.4 kg compared with the original subframe, with a lightweight rate of 12%.
- Free modal test analysis was carried out on the aluminium alloy front subframe sample after multi-objective optimizations. The error between the test results and the finite element free modal analysis results was less than 15%, which verified the accuracy of the finite element model. The fatigue endurance bench test of the aluminium alloy front subframe samples showed that the longitudinal endurance test of the aluminium alloy front subframe could reach the target value of 350,000 times, and the lateral endurance test could reach the target value of 300,000 times, satisfying the bench fatigue durability requirements.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Kim, I.Y.; Jeswiet, J. Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct. Multidiscip. Optim. 2015, 51, 547–564. [Google Scholar] [CrossRef]
- Kim, S.I.; Kang, S.W.; Yi, Y.S.; Park, J.; Kim, Y.Y. Topology optimization of vehicle rear suspension mechanisms. Int. J. Numer. Methods Eng. 2018, 113, 1412–1433. [Google Scholar] [CrossRef]
- Ali, U.; Fraser, R.A. Numerical Modeling of Rear Subframe under Different Loading Conditions; 2013-01-0571; SAE 2013 World Congress & Exhibition: Detroit, MI, USA, 2013. [Google Scholar]
- Nam, J.; Shin, H.; Choi, G. Durability prediction for automobile aluminum front subframe using nonlinear models in virtual test simulations. Int. J. Automot. Technol. 2014, 15, 593–601. [Google Scholar] [CrossRef]
- Lee, G.S.; Park, J.M.; Choi, B.L.; Choi, D.H.; Nam, C.H.; Kim, G.H. Multidisciplinary Design Optimization of Vehicle Front Suspension System Using PIDO Technology. Trans. Korean Soc. Automot. Eng. 2012, 20, 1–8. [Google Scholar]
- Oh, J.H.; Choi, H.H.; Park, S.H. The Optimization of Rear Suspension Using Hydroforming. Trans. Mater. Process. 2008, 17, 481–485. [Google Scholar]
- Park, S.Y.; Park, D.C.; Yoon, K.S.; Lee, M.S. A Study of Front Subframe System Optimization for Improving Vehicle Nvh Performance; 2009-01-2097; SAE 2009 Noise and Vibration Conference and Exhibition: St. Charles, IL, USA, 2009. [Google Scholar]
- Hur, D.; Lee, K. A Study on the FE Model Updating and Optimization for Vehicle Subframe. Trans. KSAE 2003, 10, 220–227. [Google Scholar]
- Belingardi, G.; Koricho, E.G. Design of a composite engine support sub-frame to achieve lightweight vehicles. Int. J. Automot. Compos. 2014, 1, 90–111. [Google Scholar] [CrossRef]
- Chiu, H.; Cheng, K.; Chang, M.; Chi, S. The Lightweight Chassis Sub-Frame Design by Applying Hydroforming Technology; 2010-01-0989; SAE 2010 World Congress & Exhibition: Detroit, MI, USA, 2010. [Google Scholar]
- Han, D.-H.; Ha, S. Development of lightweight composite sub-frame in automotive chassis parts considering structure & NVH performance. Compos. Res. 2019, 32, 21–28. [Google Scholar]
- Law, S.E.; Widmer, D.R. Crossmember Design Process—A Case Study; 2001-01-3068; SAE 2002 World Congress & Exhibition: Detroit, MI, USA, 2001. [Google Scholar]
- Jang, C.-S.; Yoo, Y.-D.; Jeon, J.-W.; Choi, B.-L.; Jung, E.-W. Design of a Light Weight Suspension Component Using CAE; 980901; International Congress & Exposition: Detroit, MI, USA, 1998. [Google Scholar]
- Fichera, G.; Scionti, M.; Petrone, F. Optimization of the mount system of a vehicle’s front subframe. Shock. Vib. Dig. 2006, 38, 342–343. [Google Scholar]
- Rotondella, V.; Merulla, A.; Baldini, A.; Mantovani, S. Dynamic modal correlation of an automotive rear subframe, with particular reference to the modelling of welded joints. Adv. Acoust. Vib. 2017, 2017, 8572674. [Google Scholar] [CrossRef] [Green Version]
- Da’Quan, L.; Zhou, J.; Park, J. The Use of Topology Optimization in Enhancing the Structural Property of an Automotive Front Sub-Frame. In Proceedings of the 2022 ASEE Gulf Southwest Annual Conference, Prairie View, TX, USA, 16–18 March 2022. [Google Scholar]
- Price, M. Design Optimization of a Magnesium Subframe. Master’s Thesis, Mississippi State University, Starkville, MS, USA, 2018. [Google Scholar]
- Liao, J.; Shan, L.; Feng, Y. The Design and Size Optimization of the New FCEV Subframe Based on Hypermesh Platform. Adv. Mater. Res. 2011, 328–330, 435–440. [Google Scholar] [CrossRef]
- Hamdi, A.; Yannou, B.; Landel, E. Design Target Cascading for Vibro-Acoustic Conceptual Design of An Automobile Subframe. In Proceedings of the DS 32, Proceedings of DESIGN 2004, the 8th International Design Conference, Dubrovnik, Croatia, 17–20 May 2004. [Google Scholar]
- Huang, L.; Yuan, C. Physical Drawbead Design and Modeling with ABAQUS/Isight; 2017-01-0305; WCX™ 17: SAE World Congress Experience: Detroit, MU, USA, 2017. [Google Scholar]
- Coello Coello, C.A. Recent Trends in Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective Optimization; Springer: London, UK, 2005; pp. 7–32. [Google Scholar]
- Chen, X.; Yu, X.; Ji, B. Study of Crankshaft Strength Based on iSIGHT Platform and DOE Methods. In Proceedings of the 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 13–14 March 2010; pp. 548–551. [Google Scholar]
- Park, J.S. Optimal Latin-hypercube designs for computer experiments. J. Stat. Plan. Inference 1994, 39, 95–111. [Google Scholar] [CrossRef]
- Liefvendahl, M.; Stocki, R. A study on algorithms for optimization of Latin hypercubes. J. Stat. Plan. Inference 2005, 136, 3231–3247. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.A.; Moradi, R.; Lankarani, H.M. Vehicle mass optimization for frontal structure using I-sight and study of weld parameterization for mass improvement. In ASME International Mechanical Engineering Congress and Exposition; ASME: New York, NY, USA, 2014; Volume 46613, p. V012T015A011. [Google Scholar]
- Fang, H.; Horstemeyer, M.F. Global response approximation with radial basis functions. Eng. Optim. 2006, 38, 407–424. [Google Scholar] [CrossRef]
- Alsharif, F.; McNaughton, J.L., Jr. Optimization Analysis of a V-Twin Motorcycle Engine Using WAVE Cycle Analysis and an iSight Optimization Framework. In Ricardo Software e-Brochure V3; Ricardo, Inc.: Shoreham-by-Sea, UK, 2005; Volume 14, p. 15. [Google Scholar]
- Smith, M. Abaqus User’s Manual, Version 2020; Dassault Systèmes Simulia Corp.: Johnston, RI, USA, 2020. [Google Scholar]
- Nicholson, J.C.; Arora, J.S.; Goyal, D.; Tinjum, J.M. Multi-objective structural optimization of wind turbine tower and foundation systems using Isight: A process automation and design exploration software. In Proceedings of the 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, USA, 19–24 May 2013; pp. 19–24. [Google Scholar]
- Ren, J.; Zhu, H.W.; Wang, H.; Zhao, C.F.; Zhong, J.L. Multi-objective structural optimization of VL seal ring based on Isight. J. Phys. Conf. Ser. 2020, 1622, 012031. [Google Scholar] [CrossRef]
- Wang, D.F.; Xie, C.; Liu, Y.C.; Xu, W.C.; Chen, Q. Multi-objective Collaborative Optimization for the Lightweight Design of an Electric Bus Body Frame. Automot. Innov. 2020, 3, 250–259. [Google Scholar] [CrossRef]
- Richards, Z.D.; Valavanis, K. Particle Swarm trade-off curve analysis for bi-objective optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; p. 16. [Google Scholar]
- Campbell, F.C. Fatigue and Fracture: Understanding the Basics; ASM International: Almere, The Netherlands, 2012. [Google Scholar]
- Xu, J.T.; Song, Y.D.; Ding, J.B.; Ding, S.Q. Analysis of a front sub-frame fatigue strength based on Miner theory. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010. [Google Scholar]
- Zhang, L.B.; Liu, Y.; Huang, P.C. FEM-based fatigue analysis method and application in automobile industry. Comput. Aided Eng. 2006, 1, 195–198. [Google Scholar]
- Bignonnet, A.; Thomas, J.J. Fatigue Assessment and Reliability in Automotive Design; 2001-01-4061; SAE Brasil International Conference on Fatigue: São Paulo, Brasil, 2001. [Google Scholar]
- Peiskammer, D.; Dannbauer, H.; Dutzler, E.; Puchner, K. Using fatigue life prediction to increase reliability of automotive structures. SAE Trans. 2003, 112, 174–180. [Google Scholar]
- Yu, Z.Q.; Jia, H.F.; Huang, X.Y. Design of the Lower Control Arm of an Electric SUV Front Suspension Based on Multi-Disciplinary Optimization Technology. Jordan J. Mech. Ind. Eng. 2021, 15, 7–14. [Google Scholar]
Load Loading Condition | Load Extraction Position | FX/N | FY/N | FZ/N | TX/N.mm | TY/N.mm | TZ/N.mm |
---|---|---|---|---|---|---|---|
Forward braking | Left front mounting point of lower control arm | 3284.07 | −13,698.91 | 976.43 | −12,565.55 | −4972.73 | 17,758.18 |
Backward braking | −1938.66 | 5250.36 | 440.28 | 2433.93 | 7908.52 | −17,822.63 | |
Forward emergency braking | 3603.93 | −12,297.02 | 503.65 | −10,162.87 | −6142.74 | 17,802.89 | |
Backward emergency braking | −2567.50 | 5922.08 | 384.72 | 1116.05 | 10,045.76 | −19,683.54 | |
Overconvex hull | −312.96 | −2037.32 | 330.97 | −16,806.04 | 682.42 | −1978.72 | |
Over unilateral hull | −471.74 | −3045.79 | 522.29 | −17,978.29 | 624.39 | −2796.88 | |
Over one side deep pit | 2486.79 | −19,902.80 | 3368.50 | −19,125.35 | −2931.95 | 18,310.30 | |
Ultimate steering | 160.90 | 12,037.52 | −1142.56 | −14,712.09 | −395.00 | −8286.05 | |
Steering braking | 2172.52 | −4666.31 | 467.00 | −13,050.78 | −3580.23 | 14,608.78 | |
Steering drive | −1786.45 | 13,389.08 | 933.28 | 501.83 | 8327.25 | −22,282.73 | |
Maximum driving acceleration | −959.99 | 3711.35 | 661.49 | 11,256.40 | 5734.13 | −10,161.87 | |
Diagonal torsion | −330.45 | −2186.29 | 192.93 | −12,220.28 | 305.09 | −2008.30 | |
Forward braking | Left rear mounting point of lower control arm | 6415.23 | 11,730.02 | −399.92 | −17,445.81 | 4444.70 | 1461.34 |
Backward braking | −3404.68 | −6275.54 | −788.88 | 2620.12 | −84.12 | −2600.15 | |
Forward emergency braking | 7662.75 | 13,728.38 | 10.44 | −13,110.00 | 3269.03 | 2080.89 | |
Backward emergency braking | −5073.90 | −8907.96 | −945.29 | 248.28 | 838.25 | −2830.12 | |
Overconvex hull | −392.48 | −749.21 | 88.65 | −28,138.93 | 7174.87 | −3304.56 | |
Over unilateral hull | −608.28 | −1141.71 | 153.51 | −30,776.38 | 7415.47 | −3843.70 | |
Over one side deep pit | 3891.64 | 7412.00 | −1043.45 | −32,024.11 | 6871.48 | −588.33 | |
Ultimate steering | −355.88 | −657.69 | 56.79 | −23,436.62 | 6460.99 | −3803.89 | |
Steering braking | 3647.18 | 7040.50 | −319.42 | −18,503.06 | 4927.97 | 506.97 | |
Steering drive | −4046.88 | −7266.67 | −699.38 | −772.01 | 983.45 | −3228.57 | |
Maximum driving acceleration | −1541.12 | −2936.89 | −705.71 | 15,925.78 | −3253.31 | −2182.21 | |
Diagonal torsion | −439.74 | −838.45 | 42.95 | −18,237.10 | 5292.08 | −1926.40 | |
Forward braking | Steering gear left mounting point | −35.71 | 282.71 | −42.47 | −5.02 | −335.09 | −5480.94 |
Backward braking | −37.87 | −61.51 | −76.32 | 179.50 | −675.91 | 1313.98 | |
Forward emergency braking | −481.47 | 250.38 | 150.66 | 164.99 | −2733.61 | −5023.66 | |
Backward emergency braking | 352.29 | −63.17 | 64.88 | 217.27 | 1332.79 | 1586.27 | |
Overconvex hull | −89.30 | 74.38 | 9.83 | 166.08 | −829.91 | −1352.61 | |
Over unilateral hull | −150.66 | −221.96 | 79.69 | −853.46 | −1710.82 | −1956.74 | |
Over one side deep pit | 502.53 | 2156.57 | −778.59 | 1839.08 | 6405.35 | −4312.94 | |
Ultimate steering | 349.17 | 887.21 | −328.71 | −229.11 | 4762.88 | 2935.18 | |
Steering braking | 47.06 | 633.97 | −97.38 | −452.64 | 1676.53 | −2247.49 | |
Steering drive | −730.26 | −1058.18 | −224.87 | −1624.26 | −8359.98 | 2036.35 | |
Maximum driving acceleration | −290.88 | −45.50 | −356.40 | 43.70 | −1885.46 | 733.59 | |
Diagonal torsion | −98.05 | −185.83 | −19.56 | −1143.84 | −1169.12 | −1932.29 |
Number | Position of Mounting Point | Direction | Static Stiffness Value (N/mm) | Target Static Stiffness Value (N/mm) |
---|---|---|---|---|
1 | Lower arm left front point | X | 23,810 | 12,000 |
Y | 25,641 | 16,000 | ||
Z | 40,000 | 5000 | ||
2 | Lower swing arm left back point | X | 50,0000 | 20,000 |
Y | 90,909 | 20,000 | ||
Z | 52,631 | 5000 | ||
3 | Lower arm right front point | X | 13,889 | 12,000 |
Y | 45,455 | 16,000 | ||
Z | 45,455 | 5000 | ||
4 | Lower swing arm right back point | X | 200,000 | 20,000 |
Y | 200,000 | 20,000 | ||
Z | 62,500 | 5000 | ||
5 | Steering gear left point | X | 40,000 | 25,000 |
Y | 55,556 | 25,000 | ||
Z | 22,727 | 8000 | ||
6 | Steering gear right point | X | 71,429 | 25,000 |
Y | 90,909 | 25,000 | ||
Z | 28,571 | 8000 | ||
7 | Stabilizer bar left point | X | 58,824 | 10,000 |
Y | 76,923 | 5000 | ||
Z | 40,000 | 16,000 | ||
8 | Stabilizer bar right point | X | 100,000 | 10,000 |
Y | 111,111 | 5000 | ||
Z | 47,619 | 16,000 |
Design Variable | Initial Value (mm) | Lower Limiting Value (mm) | Upper Limit Value (mm) |
---|---|---|---|
F_01 | 0 | −20 | 10 |
R_01 | 0 | −30 | 15 |
LZ_t | 0 | −5 | 5 |
LZ_b | 0 | −8 | 0 |
Responses | Total Error |
---|---|
Freq_1 | 0.99675 |
Mass | 0.99995 |
Max_stress1 | 0.99493 |
Max_stress2 | 0.99783 |
Max_stress3 | 0.99781 |
Disp | 0.9897 |
Design Variable | Initial Value/mm | Lower Limiting Value/mm | Upper Limit Value/mm | Optimal Value/mm |
---|---|---|---|---|
F_01 | 0 | −20 | 10 | 1.5 |
R_01 | 0 | −30 | 15 | −27 |
LZ_t | 0 | −5 | 5 | −4 |
LZ_b | 0 | −8 | 0 | −4.5 |
Typical Working Conditions | Model Stress before Optimization/MPa | Model Stress after Optimization/MPa |
---|---|---|
Forward braking condition | 145.7 | 141.7 |
Backward braking condition | 51.9 | 50.2 |
Forward emergency braking condition | 128.4 | 124.8 |
Backward emergency braking condition | 59.7 | 57.8 |
Over one side deep pit condition | 180.6 | 179.3 |
Ultimate steering condition | 103.7 | 101.9 |
Number | Position of Mounting Point | Direction | Static Stiffness Value of the Model before Optimization (N/mm) | Static Stiffness Value of Optimized Model (N/mm) |
---|---|---|---|---|
1 | Lower arm left front point | X | 23,810 | 24,390 |
Y | 25,641 | 23,809 | ||
Z | 40,000 | 37,037 | ||
2 | Lower swing arm left back point | X | 500,000 | 500,000 |
Y | 90,909 | 83,333 | ||
Z | 52,631 | 50,000 | ||
3 | Lower arm right front point | X | 13,889 | 13,888 |
Y | 45,455 | 40,000 | ||
Z | 45,455 | 40,000 | ||
4 | Lower swing arm right back point | X | 200,000 | 200,000 |
Y | 200,000 | 200,000 | ||
Z | 62,500 | 62,500 | ||
5 | Steering gear left point | X | 40,000 | 38,461 |
Y | 55,556 | 52,631 | ||
Z | 22,727 | 21,739 | ||
6 | Steering gear right point | X | 71,429 | 71,428 |
Y | 90,909 | 83,333 | ||
Z | 28,571 | 27,027 | ||
7 | Stabilizer bar left point | X | 58,824 | 58,823 |
Y | 76,923 | 83,333 | ||
Z | 40,000 | 38,461 | ||
8 | Stabilizer bar right point | X | 100,000 | 100,000 |
Y | 111,111 | 111,111 | ||
Z | 47,619 | 45,454 |
Order | Model Frequency before Optimization/Hz | Optimized Model Frequency/Hz |
---|---|---|
First order modal | 97 | 96 |
Second order modal | 216 | 222 |
Third order modal | 261 | 268 |
Fourth order modal | 345 | 346 |
Fifth order modal | 376 | 373 |
Sixth order modal | 397 | 417 |
Order Number | Finite Element Analysis Frequency/Hz | Test Analysis Frequency/Hz | Error/% |
---|---|---|---|
First order modal | 96 | 84 | 14.29 |
Second order modal | 222 | 201 | 10.45 |
Third order modal | 268 | 254 | 5.93 |
Fourth order modal | 346 | 342 | 1.47 |
Fifth order modal | 373 | 389 | 1.32 |
Sixth order modal | 417 | 390 | 6.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Sun, Y.; He, J.; Li, W.; Zhou, Z. Multi-Objective Lightweight Optimization Design of the Aluminium Alloy Front Subframe of a Vehicle. Metals 2023, 13, 705. https://doi.org/10.3390/met13040705
Meng X, Sun Y, He J, Li W, Zhou Z. Multi-Objective Lightweight Optimization Design of the Aluminium Alloy Front Subframe of a Vehicle. Metals. 2023; 13(4):705. https://doi.org/10.3390/met13040705
Chicago/Turabian StyleMeng, Xiangchao, Youping Sun, Jiangmei He, Wangzhen Li, and Zhifeng Zhou. 2023. "Multi-Objective Lightweight Optimization Design of the Aluminium Alloy Front Subframe of a Vehicle" Metals 13, no. 4: 705. https://doi.org/10.3390/met13040705
APA StyleMeng, X., Sun, Y., He, J., Li, W., & Zhou, Z. (2023). Multi-Objective Lightweight Optimization Design of the Aluminium Alloy Front Subframe of a Vehicle. Metals, 13(4), 705. https://doi.org/10.3390/met13040705