Material Quality Filter Model: Machine Learning Integrated with Expert Experience for Process Optimization
Abstract
:1. Introduction
2. Methods
2.1. Quality Filter Model
- Known material composition correlation. For example, the sum of all components is 100%, and the sum of several components has the highest limit;
- Known correlation between process parameters, such as the correlation between the processing temperature and the critical temperature of the material’s phase transition;
- Other existing theoretical or empirical formulas and expressions.
2.2. Machine Learning Algorithms
2.2.1. Artificial Neural Network Model
2.2.2. Discriminant Analysis Model
3. Results and Discussion
3.1. Raw-Material–Process–Property (C–T–P) Model
3.1.1. ANN Model
3.1.2. Discriminant Analysis Model
3.1.3. Model Visualization
3.2. Expert Experience and Process Median
3.3. Quality Filter Result
4. Conclusions
- The model has broad applicability because it can apply various quantitative or semi-quantitative machine learning algorithms.
- It can match appropriate processing parameters according to the fluctuation in raw material parameters to achieve a hedging effect, thereby improving overall product quality and narrowing its property fluctuation.
- A set of trial production data of wind power steel from a steel plant was used to test the model. The results show that for the same raw material, only the hedging adjustment of the processing parameters can increase the product’s ReL and Akv−20°C by 15–60 MPa and 30–40 J, respectively. Both test samples reached or nearly reached the optimization target of ReL ≥ 380MPa and AKv−20°C ≥ 190J.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chen, N.; Zhu, D.D.; Wang, W. Intelligent materials processing by hyperspace data mining. Eng. Appl. Artif. Intell. 2000, 13, 527–532. [Google Scholar] [CrossRef]
- De Bussac, A.; Gandin, C.-A. Prediction of a process window for the investment casting of dendritic single crystals. Mater. Sci. Eng. A 1997, 237, 35–42. [Google Scholar] [CrossRef]
- Pernkopf, F. 3D surface acquisition and reconstruction for inspection of raw steel products. Comput. Ind. 2005, 56, 876–885. [Google Scholar] [CrossRef]
- Sun, X.; Gu, J.; Tang, S.; Li, J. Research Progress of Visual Inspection Technology of Steel Products—A Review. Appl. Sci. 2018, 8, 2195. [Google Scholar] [CrossRef]
- Yin, R. Theory and Methods of Metallurgical Process Integration; Elsevier: Beijing, China, 2016; pp. 45–49. [Google Scholar] [CrossRef]
- Lin, L.; Zeng, J.-Q. Consideration of green intelligent steel processes and narrow window stability control technology on steel quality. Int. J. Miner. Met. Mater. 2021, 28, 1264–1273. [Google Scholar] [CrossRef]
- Sawaragi, T. Human-System Co-Creative Design of Resilience. IFAC-PapersOnLine 2016, 49, 468–473. [Google Scholar] [CrossRef]
- Zarandi, M.F.; Ahmadpour, P. Fuzzy agent-based expert system for steel making process. Expert Syst. Appl. 2009, 36, 9539–9547. [Google Scholar] [CrossRef]
- Merten, D.C.; Hütt, M.-T.; Uygun, Y. A network analysis of decision strategies of human experts in steel manufacturing. Comput. Ind. Eng. 2022, 168, 108120. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Mater. 2017, 3, 159–177. [Google Scholar] [CrossRef]
- Mandal, S.; Sivaprasad, P.; Venugopal, S.; Murthy, K.; Raj, B. Artificial neural network modeling of composition–process–property correlations in austenitic stainless steels. Mater. Sci. Eng. A 2008, 485, 571–580. [Google Scholar] [CrossRef]
- Liu, S.; Xiong, Z.; Guo, H.; Shang, C.; Misra, R. The significance of multi-step partitioning: Processing-structure-property relationship in governing high strength-high ductility combination in medium-manganese steels. Acta Mater. 2017, 124, 159–172. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, X.; Liang, J.; Shen, Y.; Misra, R. Innovative processing of obtaining nanostructured bainite with high strength—High ductility combination in low-carbon-medium-Mn steel: Process-structure-property relationship. Mater. Sci. Eng. A 2018, 718, 267–276. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, W.-D.; Gao, W. Prediction of the mechanical properties of hot-rolled C Mn steels using artificial neural networks. J. Mater. Process. Technol. 1996, 57, 332–336. [Google Scholar] [CrossRef]
- Reddy, N.S.; Krishnaiah, J.; Hong, S.-G.; Lee, J.S. Modeling medium carbon steels by using artificial neural networks. Mater. Sci. Eng. A 2009, 508, 93–105. [Google Scholar] [CrossRef]
- Xie, Q.; Suvarna, M.; Li, J.; Zhu, X.; Cai, J.; Wang, X. Online prediction of mechanical properties of hot rolled steel plate using machine learning. Mater. Des. 2021, 197, 109201. [Google Scholar] [CrossRef]
- Jung, J.; Yoon, J.I.; Park, H.K.; Kim, J.Y.; Kim, H.S. Bayesian approach in predicting mechanical properties of materials: Application to dual phase steels. Mater. Sci. Eng. A 2018, 743, 382–390. [Google Scholar] [CrossRef]
- Boto, F.; Murua, M.; Gutierrez, T.; Casado, S.; Carrillo, A.; Arteaga, A. Data Driven Performance Prediction in Steel Making. Metals 2022, 12, 172. [Google Scholar] [CrossRef]
- Hwang, R.-C.; Chen, Y.-J.; Huang, H.-C. Artificial intelligent analyzer for mechanical properties of rolled steel bar by using neural networks. Expert Syst. Appl. 2010, 37, 3136–3139. [Google Scholar] [CrossRef]
- Shen, C.; Wang, C.; Wei, X.; Li, Y.; van der Zwaag, S.; Xu, W. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel. Acta Mater. 2019, 179, 201–214. [Google Scholar] [CrossRef]
- Xue, D.; Balachandran, P.V.; Hogden, J.; Theiler, J.; Xue, D.; Lookman, T. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 2016, 7, 11241. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, S.; Li, W.; Jin, X. Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels. Mater. Des. 2020, 192, 108696. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, D.; Chang, H.; Li, H. Deep learning of subsurface flow via theory-guided neural network. J. Hydrol. 2020, 584, 124700. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D. Integration of knowledge and data in machine learning. arXiv 2022, arXiv:2202.10337. [Google Scholar]
- Stergiou, K.; Ntakolia, C.; Varytis, P.; Koumoulos, E.; Karlsson, P.; Moustakidis, S. Enhancing property prediction and process optimization in building materials through machine learning: A review. Comput. Mater. Sci. 2023, 220, 112031. [Google Scholar] [CrossRef]
- Mohanty, I.; Bhattacharjee, D.; Datta, S. Designing cold rolled IF steel sheets with optimized tensile properties using ANN and GA. Comput. Mater. Sci. 2011, 50, 2331–2337. [Google Scholar] [CrossRef]
- Sun, Y.; Zeng, W.; Han, Y.; Ma, X.; Zhao, Y. Optimization of chemical composition for TC11 titanium alloy based on artificial neural network and genetic algorithm. Comput. Mater. Sci. 2011, 50, 1064–1069. [Google Scholar] [CrossRef]
- Diao, Y.; Yan, L.; Gao, K. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels. J. Mater. Sci. Technol. 2021, 109, 86–93. [Google Scholar] [CrossRef]
- Yan, Y.; Lv, Z. A Novel Multi-Objective Process Parameter Interval Optimization Method for Steel Production. Metals 2021, 11, 1642. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Horng, M.-H.; Yang, Y.-Y.; Hsu, J.-H.; Chen, Y.-T.; Hung, Y.-C.; Sun, Y.-N.; Tsai, Y.-H. The Steelmaking Process Parameter Optimization with a Surrogate Model Based on Convolutional Neural Networks and the Firefly Algorithm. Appl. Sci. 2021, 11, 4857. [Google Scholar] [CrossRef]
- Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R.; et al. A survey of uncertainty in deep neural networks. arXiv 2022, arXiv:2107.03342. [Google Scholar]
- Laha, D.; Ren, Y.; Suganthan, P. Modeling of steelmaking process with effective machine learning techniques. Expert Syst. Appl. 2015, 42, 4687–4696. [Google Scholar] [CrossRef]
- Backman, J.; Kyllönen, V.; Helaakoski, H. Methods and Tools of Improving Steel Manufacturing Processes: Current State and Future Methods. IFAC-PapersOnLine 2019, 52, 1174–1179. [Google Scholar] [CrossRef]
- Jahazi, M.; Egbali, B. The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel. J. Mater. Process. Technol. 2000, 103, 276–279. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Li, Z.; Chai, F.; Yang, L.; Luo, X.; Yang, C. Mechanical properties and nanoparticles precipitation behavior of multi-component ultra high strength steel. Mater. Des. 2020, 191, 108637. [Google Scholar] [CrossRef]
- Hou, C.; Shan, Y.; Wu, H.; Bi, X. Effect of a small addition of Cr on soft magnetic and mechanical properties of Fe–49Co–2V alloy. J. Alloys Compd. 2013, 556, 51–55. [Google Scholar] [CrossRef]
- Su, H.; Che, Z.-H.; Wu, J.-M.; Li, R. Classification Mapping and Its Application on Chemical Systems. J. Chem. Inf. Comput. Sci. 1999, 39, 718–727. [Google Scholar] [CrossRef]
- Hearn, E. Mechanics of Materials; Elsevier: Amsterdam, The Netherlands; University of Warwick: Coventry, UK, 1997; pp. 4–5. [Google Scholar] [CrossRef]
- Hashemi, S.; Mohammadyani, D. Characterisation of weldment hardness, impact energy and microstructure in API X65 steel. Int. J. Press. Vessel. Pip. 2012, 98, 8–15. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv 2012, arXiv:1206.2944. [Google Scholar]
- Gorni, A. Steel Forming and Heat Treating Handbook; Antonio Augusto Gorni: São Vicente, SP, Brazi, 2019; pp. 26–43. [Google Scholar] [CrossRef]
Type | No. | Parameter | Min | Max | Mean | SD |
---|---|---|---|---|---|---|
Raw Material | C1 | C (wt%) | 0.15 | 0.18 | 0.169 | 0.0064 |
C2 | Mn (wt%) | 0.93 | 1.46 | 1.09 | 0.1568 | |
C3 | S (wt%) | 0.002 | 0.018 | 0.008 | 0.0033 | |
C4 | Nb (wt%) | 0.008 | 0.023 | 0.011 | 0.002 | |
C5 | N (ppm) | 18 | 65 | 37 | 6.82 | |
C6 | Steel Plate Thickness (mm) | 10 | 60 | 23 | 8.9 | |
C7 | Blank Thickness (mm) | 220 | 260 | 230 | 17.45 | |
Process | T1 | Heating Temperature (°C) | 1192 | 1240 | 1219 | 8.7 |
T2 | Second-Stage Rolling Temperature (°C) | 850 | 1020 | 938 | 31.74 | |
T3 | Thickness Ratio After Rough Rolling | 1.50 | 4.15 | 2.52 | 0.42 | |
T4 | Finish Rolling Temperature (°C) | 785 | 848 | 821 | 11.7 | |
T5 | After-Cooling Temperature (°C) | 614 | 694 | 657 | 12.57 | |
Property | P1 | ReL (MPa) | 358 | 438 | 403.1 | 16.5 |
P2 | AKv−20°C (J) | 112 | 259 | 188.6 | 28.4 |
Ground Truth Class | Classification Result | |
---|---|---|
Qualified | Unqualified | |
Qualified | 64 | 10 |
Unqualified | 12 | 42 |
Processing Parameter | Min | Max | Median |
---|---|---|---|
T1 | 1160 (°C) | 1250 (°C) | 1205 (°C) |
T2 | 850 (°C) | 1000 (°C) | 925 (°C) |
T3 | 1.5 | 4 | 2.75 |
T4 | 760 (°C) | 860 (°C) | 810 (°C) |
T5 | 580 (°C) | 720 (°C) | 650 (°C) |
Raw Material Parameters | Expert Experience | |||||||
---|---|---|---|---|---|---|---|---|
Sample No. | C1 | C2 | C3 | C4 | C5 | C6 | C7 | TAr3 |
1 | 0.17 | 1.02 | 0.007 | 0.009 | 36 | 24.6 | 220 | \ |
2 | 0.17 | 1.42 | 0.011 | 0.010 | 34 | 42.5 | 260 | \ |
3 | 0.16 | 1.01 | 0.007 | 0.010 | 30 | 22.0 | 220 | 755 °C |
4 | 0.17 | 1.00 | 0.009 | 0.011 | 31 | 20.0 | 220 | 750 °C |
Processing Parameters | Property | ReL ≥ 380 MPa and Akv−20°C ≥ 190 J | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample No. | T1 (°C) | T2 | T3 (°C) | T4 (°C) | T5 (°C) | ReL (MPa) | AKv−20°C (J) | ||
3 | Original | 980 | 2.55 | 803 | 670 | 1214 | 369 | 161 | Unqualified |
QF Result | 940 | 2.51 | 824 | 664 | 1220 | 431 | 204 | Qualified | |
4 | Original | 930 | 2.30 | 845 | 660 | 1231 | 402 | 156 | Unqualified |
QF Result | 953 | 2.40 | 819 | 669 | 1219 | 417 | 187 | Nearly Qualified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, H.; Pan, T.; Su, H.; Meng, H. Material Quality Filter Model: Machine Learning Integrated with Expert Experience for Process Optimization. Metals 2023, 13, 898. https://doi.org/10.3390/met13050898
Wang X, Li H, Pan T, Su H, Meng H. Material Quality Filter Model: Machine Learning Integrated with Expert Experience for Process Optimization. Metals. 2023; 13(5):898. https://doi.org/10.3390/met13050898
Chicago/Turabian StyleWang, Xuandong, Hao Li, Tao Pan, Hang Su, and Huimin Meng. 2023. "Material Quality Filter Model: Machine Learning Integrated with Expert Experience for Process Optimization" Metals 13, no. 5: 898. https://doi.org/10.3390/met13050898
APA StyleWang, X., Li, H., Pan, T., Su, H., & Meng, H. (2023). Material Quality Filter Model: Machine Learning Integrated with Expert Experience for Process Optimization. Metals, 13(5), 898. https://doi.org/10.3390/met13050898