The Influence of Alloying Elements on the Microstructure and Properties of Al-Si-Based Casting Alloys: A Review
Abstract
:1. Introduction
- Main/basic elements are added in higher amounts and mainly control castability and the evolution of properties;
- Secondary/doping elements in lower amounts provide support for effects such as solidification behavior control, microstructural refinement and modification of phase morphology, promotion or suppression of secondary phase formation and reduction of oxidation.
- Impurities, being elements whose control is limited due to the fabrication process, can affect castability and form insoluble phases that may either limit or, at times, improve certain properties.
2. Effects of Alloying Elements
2.1. Main Elements
2.2. Modifiers of the Eutectic Morphology
2.3. Grain Refiners
2.4. Iron and Modifiers of the β-AlFeSi Phase
2.5. Rare Earth (RE) Elements
2.6. Other Transition Elements
3. Concluding Remarks
- With respect to optimization of the morphology of eutectic Si, strontium addition remains the main route for achievement, usually at amounts no higher than 200 ppm to avoid issues related to porosity and coarse precipitate formation, although the use of antimony has also been a matter of interest, although an excessively wide range of Sb concentration in Al alloys has already been assessed and, in general, these are higher than the ones necessary for Sr. The use of alkaline metals, such as sodium and calcium, does not appear to be advantageous.
- Regarding grain refinement, Al-5Ti-1B master alloy remains the material of choice to achieve this goal, usually added in amounts up to 0.15wt%. However, the interest in the development of other refiners that can overcome the poisoning effect to which the Ti-B-based ones are susceptible in certain compositions, as well as the idealization of master alloys with multiple actions, e.g., grain refinement + eutectic modification at one, is pointed out. In this sense, the development of Al-Ti-C-B-based, Nb-based and RE-based systems is noteworthy, as well as all of them being added in similar concentrations as those used for the Al-Ti-B-based ones. Rare earth elements still bring the additional advantage of improving the corrosive properties of Al alloys.
- To overcome the deleterious effect of the needle-shaped β-AlFeSi phase, the addition of manganese appears to be the most straightforward solution, especially considering the low cost and availability of the element. Despite the existence of the Fe:Mn = 2:1 rule of thumb, relatively high Mn concentrations, around 0.1–0.2%, have been successfully used. Other elements—Cr, Mo, V, W, Ni—can also perform this neutralizing action. The challenge remains to define optimum amounts to be added to the alloy to ensure that the deleterious phase is completely neutralized without the formation of intermetallic phases in excess and too coarse, which can be equally harmful to the alloy’s performance. This is a matter of vital importance, especially considering the increasing recycling trend since recycled Al alloys usually present even higher Fe amounts.
- Several elements, especially transition elements and rare earth, can be used for the purpose of improving strength and thermal stability. Again, careful design of these additions is necessary to avoid the formation of coarse precipitates and aggregates that provide no tangible benefit to the final material. Promising transition elements include nickel, vanadium, scandium and zirconium, whose optimum amounts will rely on base alloy composition and desired properties. Their effects on corrosion are disputed and appear to depend on exposure conditions in addition to element concentration. The relevance of studies focused on thermal stability justifies itself by the increasing interest in critical applications of Al alloys in the automotive and aerospace sectors to maximize weight reduction.
- Studies focused on the careful design of alloying elements’ amounts are necessary to help overcome cost-related issues, provided that several of the promising elements, such as niobium, rare earth and transition elements, are relatively expensive. In this sense, property optimization can counteract economic issues by allowing the use of less material and reduced sections in components to achieve similar strength levels.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rams, J.; Whittaker, M. (Eds.) Light Alloys and Composites—High Temperature Extreme Alloys and Composites. In Encyclopedia of Materials: Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1. [Google Scholar]
- Polmear, I.; StJohn, D.; Nie, J.-F.; Qian, M. Light Alloys: Metallurgy of the Light Metals, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Kaufman, J.G.; Rooy, E.L. Aluminum Alloy Castings: Properties, Processes, and Applications, 1st ed.; ASM International: Amiel, The Netherlands, 2004. [Google Scholar]
- Kaba, M.; Donmez, A.; Cukur, A.; Kurban, A.F.; Cubuklusu, H.E.; Birol, Y. AlSi5Mg0.3 Alloy for the Manufacture of Automotive Wheels. Int. J. Met. 2018, 12, 614–624. [Google Scholar] [CrossRef]
- Glazoff, M.V.; Khvan, A.V.; Zolotorevsky, V.S.; Belov, N.A.; Dinsdale, A.T. Casting Aluminum Alloys: Their Physical and Mechanical Metallurgy, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2018; ISBN 9780128121146. [Google Scholar]
- Mbuya, T.O.; Odera, B.O.; Ng’ang’a, S.P. Influence of Iron on Castability and Properties of Aluminium Silicon Alloys: Literature Review. Int. J. Cast Met. Res. 2003, 16, 451–465. [Google Scholar] [CrossRef]
- Ganesh, M.R.S.; Reghunath, N.; J.Levin, M.; Prasad, A.; Doondi, S.; Shankar, K.V. Strontium in Al–Si–Mg Alloy: A Review. Met. Mater. Int. 2022, 28, 1–40. [Google Scholar] [CrossRef]
- Hiremath, P.; Sharma, S.; Shettar, M. Influence of Various Trace Metallic Additions and Reinforcements on A319 and A356 Alloys—A Review. Cogent Eng. 2022, 9, 2007746. [Google Scholar] [CrossRef]
- Dash, S.S.; Chen, D. A Review on Processing-Microstructure-Property Relationships of Al-Si Alloys: Recent Advances in Deformation Behavior. Metals 2023, 13, 609. [Google Scholar] [CrossRef]
- Campbell, J. A Personal View of Microstructure and Properties of Al Alloys. Materials 2021, 14, 1297. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Jaber, G.T.; Omran, A.M.; Khalil, K.A.; Fujii, M.; Seki, M.; Yoshida, A. An Investigation into Solidification and Mechanical Properties Behavior of Al-Si Casting Alloys. Int. J. Mech. Mechatron. Eng. 2010, 10, 30–35. [Google Scholar]
- Bogdanoff, T.; Seifeddine, S.; Dahle, A.K. The Effect of Si Content on Microstructure and Mechanical Properties of Al-Si Alloy. Metall. Ital. 2016, 108, 65–68. [Google Scholar]
- Wang, Y.; Liao, H.; Wu, Y.; Yang, J. Effect of Si Content on Microstructure and Mechanical Properties of Al-Si-Mg Alloys. Mater. Des. 2014, 53, 634–638. [Google Scholar] [CrossRef]
- Cáceres, C.H.; Taylor, J.A. Enhanced Ductility in Al-Si-Cu-Mg Foundry Alloys with High Si Content. Metall. Mater. Trans. B 2006, 37, 897–903. [Google Scholar] [CrossRef]
- Kumar, V.; Mehdi, H.; Kumar, A. Effect of Silicon Content on the Mechanical Properties of Aluminum Alloy. Int. Res. J. Eng. Technol. 2015, 2, 1326–1330. [Google Scholar]
- Lumley, R.N. (Ed.) Fundamentals of Aluminium Metallurgy: Production, Processing and Applications; Woodhead Publishing: Suston, UK, 2011. [Google Scholar]
- Garc, C.; Isabel, A.; Mart, F. Comparative Study on Microstructure and Corrosion Resistance of Al-Si Alloy Cast from Sand Mold and Binder Jetting Mold. Metals 2021, 11, 1421. [Google Scholar] [CrossRef]
- Gomes, L.F.; Kugelmeier, C.L.; Garcia, A.; Della Rovere, C.A.; Spinelli, J.E. Influences of Alloying Elements and Dendritic Spacing on the Corrosion Behavior of Al-Si-Ag Alloys. J. Mater. Res. Technol. 2021, 15, 5880–5893. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Wang, M. Microstructures and Corrosion Resistances of Hypoeutectic Al-6.5Si-0.45 Mg Casting Alloy with Addition of Sc and Zr. Mater. Chem. Phys. 2021, 276, 125321. [Google Scholar] [CrossRef]
- Osório, W.R.; Goulart, P.R.; Garcia, A. Effect of Silicon Content on Microstructure and Electrochemical Behavior of Hypoeutectic Al-Si Alloys. Mater. Lett. 2008, 62, 365–369. [Google Scholar] [CrossRef]
- Öztürk, İ.; Ağaoğlu, G.H.; Erzi, E.; Dispinar, D.; Orhan, G. Effects of Strontium Addition on the Microstructure and Corrosion Behavior of A356 Aluminum Alloy. J. Alloys Compd. 2018, 763, 384–391. [Google Scholar] [CrossRef]
- Abalymov, V.R.; Zhereb, V.P.; Kleimenov, Y.A.; Antonov, M.M. Effect of Heat Treatment on the Structure and Mechanical Properties of Eutectic Silumin Alloyed with Magnesium. Met. Sci. Heat Treat. 2021, 63, 291–296. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wang, J. Quantifying the Effects of Cooling Rates and Alloying Additions on the Microporosity Formation in Al Alloys. Mater. Today Commun. 2021, 28, 102524. [Google Scholar] [CrossRef]
- Dinnis, C.M.; Otte, M.O.; Dahle, A.K.; Taylor, J.A. The Influence of Strontium on Porosity Formation in Al-Si Alloys. Metall. Mater. Trans. A 2004, 35, 3531–3541. [Google Scholar] [CrossRef]
- Elsharkawi, E.A.; Ibrahim, M.F.; Samuel, A.M.; Doty, H.W.; Samuel, F.H. Understanding the Effect of Be Addition on the Microstructure and Tensile Properties of Al–Si–Mg Cast Alloys. Int. J. Met. 2022, 16, 1777–1795. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Zhang, S.; Song, J.; Zhou, X.; Zha, M.; Wang, H. Fe-Bearing Phase Formation, Microstructure Evolution, and Mechanical Properties of Al-Mg-Si-Fe Alloy Fabricated by the Twin-Roll Casting Process. J. Alloys Compd. 2021, 886, 161202. [Google Scholar] [CrossRef]
- Furui, M.; Kitamura, T.; Ishikawa, T.; Ikeno, S.; Saikawa, S.; Sakai, N. Evaluation of Age Hardening Behavior Using Composite Rule and Microstructure Observation in Al-Si-Mg Alloy Castings. Mater. Trans. 2011, 52, 1163–1167. [Google Scholar] [CrossRef] [Green Version]
- Drouzy, M.; Jacob, S.; Richard, M. Interpretation of Tensile Results by Means of a Quality Index. AFS Int. Cast Met. J. 1980, 5, 43–50. [Google Scholar]
- Taylor, J.A.; StJohn, D.H.; Barresi, J.; Couper, M.J. An Empirical Analysis of Trends in Mechanical Properties of T6 Heat Treated Al-Si-Mg Casting Alloys. Int. J. Cast Met. Res. 2000, 12, 419–430. [Google Scholar] [CrossRef]
- Fortini, A.; Merlin, M.; Fabbri, E.; Pirletti, S.; Garagnani, G.L. On the Influence of Mn and Mg Additions on Tensile Properties, Microstructure and Quality Index of the A356 Aluminum Foundry Alloy. Procedia Struct. Integr. 2016, 2, 2238–2245. [Google Scholar] [CrossRef] [Green Version]
- Ridgeway, C.D.; Gu, C.; Luo, A.A. Predicting Primary Dendrite Arm Spacing in Al–Si–Mg Alloys: Effect of Mg Alloying. J. Mater. Sci. 2019, 54, 9907–9920. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Z.; Li, J. Influence of Alloying Element Mg on Na and Sr Modifying Al-7Si Hypoeutectic Alloy. Materials 2022, 15, 1537. [Google Scholar] [CrossRef]
- Stanić, D.; Brodarac, Z.Z.; Li, L. Influence of Copper Addition in AlSi7MgCu Alloy on Microstructure Development and Tensile Strength Improvement. Metals 2020, 10, 1623. [Google Scholar] [CrossRef]
- Di Giovanni, M.T.; Mørtsell, E.A.; Saito, T.; Akhtar, S.; Di Sabatino, M.; Li, Y.; Cerri, E. Influence of Cu Addition on the Heat Treatment Response of A356 Foundry Alloy. Mater. Today Commun. 2019, 19, 342–348. [Google Scholar] [CrossRef]
- Baskaran, J.; Raghuvaran, P.; Ashwin, S. Experimental Investigation on the Effect of Microstructure Modifiers and Heat Treatment Influence on A356 Alloy. Mater. Today Proc. 2021, 37, 3007–3010. [Google Scholar] [CrossRef]
- Wang, E.R.; Hui, X.D.; Wang, S.S.; Zhao, Y.F.; Chen, G.L. Improved Mechanical Properties in Cast Al-Si Alloys by Combined Alloying of Fe and Cu. Mater. Sci. Eng. A 2010, 527, 7878–7884. [Google Scholar] [CrossRef]
- Jeong, C. High Temperature Mechanical Properties of AlSiMg-(Cu) Alloys for Automotive Cylinder Heads. Mater. Trans. 2013, 54, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Bogdanoff, T.; Lattanzi, L.; Merlin, M.; Ghassemali, E.; Jarfors, A.E.W.; Seifeddine, S. The Complex Interaction between Microstructural Features and Crack Evolution during Cyclic Testing in Heat-Treated Al–Si–Mg–Cu Cast Alloys. Mater. Sci. Eng. A 2021, 825, 141930. [Google Scholar] [CrossRef]
- Lumley, R.N.; Gunasegaram, D.R.; Gershenzon, M.; O’Donnell, R.G. Effect of Alloying Elements on Heat Treatment Response of Aluminium High Pressure Die Castings. Int. Heat Treat. Surf. Eng. 2010, 4, 25–32. [Google Scholar] [CrossRef]
- Yamamoto, K.; Takahashi, M.; Kamikubo, Y.; Sugiura, Y.; Iwasawa, S.; Nakata, T.; Kamado, S. Optimization of Cu Content for the Development of High-Performance T5-Treated Thixo-Cast Al–7Si–0.5Mg–Cu (Wt.%) Alloy. J. Mater. Sci. Technol. 2021, 93, 178–190. [Google Scholar] [CrossRef]
- Ye, H. An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications. J. Mater. Eng. Perform. 2003, 12, 288–297. [Google Scholar] [CrossRef]
- Okayasu, M.; Sahara, N.; Mayama, N. Effect of the Microstructural Characteristics of Die-Cast ADC12 Alloy Controlled by Na and Cu on the Mechanical Properties of the Alloy. Mater. Sci. Eng. A 2022, 831, 142120. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, S.; Wei, Z.; Bai, P. The Relationship between Residual Amount of Sr and Morphology of Eutectic Si Phase in A356 Alloy. Materials 2019, 12, 3222. [Google Scholar] [CrossRef] [Green Version]
- Nafisi, S.; Ghomashchi, R. Effects of Modification during Conventional and Semi-Solid Metal Processing of A356 Al-Si Alloy. Mater. Sci. Eng. A 2006, 415, 273–285. [Google Scholar] [CrossRef]
- Vincze, F.; Tokár, M.; Fegyverneki, G.; Gyarmati, G. Examination of the Eutectic Modifying Effect of Sr on an Al-Si-Mg-Cu Alloy Using Various Technological Parameters. Arch. Foundry Eng. 2020, 2020, 79–84. [Google Scholar] [CrossRef]
- Sigworth, G.K. The Modification of Al-Si Casting Alloys: Important Practical and Theoretical Aspects. Int. J. Met. 2008, 2, 19–40. [Google Scholar] [CrossRef]
- Fracchia, E.; Gobber, F.S.; Rosso, M. Effect of Alloying Elements on the Sr Modification of Al-Si Cast Alloys. Metals 2021, 11, 342. [Google Scholar] [CrossRef]
- Lee, P.D.; Sridhar, S. Direct Observation of the Effect of Strontium on Porosity Formation during the Solidification of Aluminium-Silicon Alloys. Int. J. Cast Met. Res. 2000, 13, 185–198. [Google Scholar] [CrossRef]
- Miresmaeili, S.M.; Campbell, J.; Shabestari, S.G.; Boutorabi, S.M.A. Precipitation of Sr-Rich Intermetallic Particles and Their Influence on Pore Formation in Sr-Modified A356 Alloy. Metall. Mater. Trans. A 2005, 36, 2341–2349. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, Q.; Yu, W. Effect of Strontium Modification on Porosity Formation in A356 Alloy. Int. J. Met. 2019, 13, 944–952. [Google Scholar] [CrossRef]
- Gyarmati, G.; Fegyverneki, G.; Tokár, M.; Mende, T. Investigation on Double Oxide Film Initiated Pore Formation in Aluminum Casting Alloys. Int. J. Eng. Manag. Sci. 2020, 5, 141–153. [Google Scholar] [CrossRef]
- Flores, A.V.; Lopez, J.C.; Escobedo, J.C.B.; Castillejos, A.H.E.; Acosta, F.A.G. Effects of S and Sb Additions on the Microstructure and Mechanical Properties of the Al-Si 319 Alloy. Can. Metall. Q. 1994, 33, 133–138. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, B.; Chen, X.; Xi, W.; Cheng, J. Effect of Sb Modification and B Refinement on the Microstructure and Properties of As-Cast Al-7Si-0.35Mg Alloy. Int. J. Met. 2023, 17, 1065–1076. [Google Scholar] [CrossRef]
- Jahromi, S.A.J.; Dehghan, A.; Malekjani, S. Effects of Optimum Amount of Sr and Sb Modifiers on Tensile, Impact and Fatigue Properties of A356 Aluminum Alloy. Iran. J. Sci. Technol. Trans. B Eng. 2004, 28, 225–232. [Google Scholar]
- Fedak, M.; Rimar, M.; Corny, I.; Kuna, S. Experimental Study of Correlation of Mechanical Properties of Al-Si Casts Produced by Pressure Die Casting with Si/Fe/Mn Content and Their Mutual Mass Relations. Adv. Mater. Sci. Eng. 2013, 2013, 585514. [Google Scholar] [CrossRef] [Green Version]
- Medlen, D.; Bolibruchova, D. Effect of Sb-Modification on the Microstructure and Mechanical Properties of Secondary Alloy 319. Arch. Metall. Mater. 2016, 61, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.L.; Gomes, L.F.; Garcia, A.; Spinelli, J.E. Comparing the Roles of Sb and Bi on Microstructures and Application Properties of the Al-15% Si Alloy. J. Alloys Compd. 2021, 878, 160343. [Google Scholar] [CrossRef]
- Gursoy, O.; Timelli, G. The Role of Bismuth as Trace Element on the Solidification Path and Microstructure of Na-modified AlSi7Mg Alloys. Adv. Eng. Mater. 2023, 25, 2201377. [Google Scholar] [CrossRef]
- Xu, C.; Xiao, W.; Hanada, S.; Yamagata, H.; Ma, C. The Effect of Scandium Addition on Microstructure and Mechanical Properties of Al-Si-Mg Alloy: A Multi-Refinement Modifier. Mater. Charact. 2015, 110, 160–169. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, M.; Liu, Y.; Cai, B. Microstructures and Corrosion Behaviors of Al–6.5Si–0.45Mg–XSc Casting Alloy. Trans. Nonferrous Met. Soc. China 2022, 32, 424–435. [Google Scholar] [CrossRef]
- Pramod, S.L.; Ravikirana; Rao, A.K.P.; Murty, B.S.; Bakshi, S.R. Effect of Sc Addition and T6 Aging Treatment on the Microstructure Modification and Mechanical Properties of A356 Alloy. Mater. Sci. Eng. A 2016, 674, 438–450. [Google Scholar] [CrossRef]
- Wang, M.; Guo, Y.; Wang, H.; Zhao, S. Characterization of Refining the Morphology of Al–Fe–Si in A380 Aluminum Alloy Due to Ca Addition. Processes 2022, 10, 672. [Google Scholar] [CrossRef]
- Alkahtani, S. Effect of Mg, Sr, Ti and Aging Parameters on the Mechanical Behavior of 319 Alloys in the T5 and T6 Heat Treatment. Adv. Mater. Res. 2012, 482–484, 2275–2288. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Chou, C.Y.; Lee, S.L.; Lin, C.K.; Lin, J.C.; Lim, S.W. Effect of Trace La Addition on the Microstructures and Mechanical Properties of A356 (Al-7Si-0.35Mg) Aluminum Alloys. J. Alloys Compd. 2009, 487, 157–162. [Google Scholar] [CrossRef]
- Nikitin, K.V.; Nikitin, V.I.; Deev, V.B. Effect of Adding Rare-Earth and Alkaline-Earth Metals to Aluminum-Based Master Alloys on the Structure and Properties of Hypoeutectic Silumines. Metallurgist 2021, 65, 81–86. [Google Scholar] [CrossRef]
- Totten, G.E.; Tiryakioglu, M.; Kessler, O. (Eds.) Encyclopedia of Aluminum and Its Alloys; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.R.; Thompson, G.E.; Pennycook, T.; Hashimoto, T. Grain Refining Mechanism in the Al/Al-Ti-B System. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Jia, Y.; Song, D.; Zhou, N.; Zheng, K.; Fu, Y.; Shu, D. In Situ Investigation of Si-poisoning Effect in Al–Cu–Si Alloys Inoculated by Al–5Ti–1B. Acta Metall. Sin. 2022, 35, 146–156. [Google Scholar] [CrossRef]
- Azimi, H.; Nourouzi, S.; Jamaati, R. Effects of Ti Particles and T6 Heat Treatment on the Microstructure and Mechanical Properties of A356 Alloy Fabricated by Compocasting. Mater. Sci. Eng. A 2021, 818, 141443. [Google Scholar] [CrossRef]
- Saheb, N.; Laoui, T.; Daud, A.R.; Harun, M.; Radiman, S.; Yahaya, R. Influence of Ti Addition on Wear Properties of Al-Si Eutectic Alloys. Wear 2001, 249, 656–662. [Google Scholar] [CrossRef]
- Polkowska, A.; Boyko, V.; Czekaj, E.; Mikhalenkov, K.; Saja, K. Microstructural Evolution of an Al–Mg–Si–Mn–Fe Alloy Due to Ti and P Addition. Int. J. Mater. Res. 2021, 112, 695–705. [Google Scholar] [CrossRef]
- Samuel, A.M.; Samuel, E.; Songmene, V.; Samuel, F.H. A Comparative Study of Grain Refining of Al-(7–17%) Si Cast Alloys Using Al-10% Ti and Al-4% B Master Alloys. Materials 2023, 16, 2867. [Google Scholar] [CrossRef]
- Lee, C. Effect of Ti-B Addition on the Variation of Microporosity and Tensile Properties of A356 Aluminium Alloys. Mater. Sci. Eng. A 2016, 668, 152–159. [Google Scholar] [CrossRef]
- Choudhary, C.; Sahoo, K.L.; Roy, H.; Mandal, D. Effect of Grain Refiner on Microstructural Feature Influence Hardness and Tensile Properties of Al-7Si Alloy. J. Mater. Eng. Perform. 2022, 31, 3262–3273. [Google Scholar] [CrossRef]
- Wu, D.; Ma, S.; Jing, T.; Wang, Y.; Wang, L.; Kang, J.; Wang, Q.; Wang, W.; Li, T.; Su, R. Revealing the Mechanism of Grain Refinement and Anti Si-Poisoning Induced by (Nb, Ti)B2 with a Sandwich-like Structure. Acta Mater. 2021, 219, 117265. [Google Scholar] [CrossRef]
- Mao, G.; Tong, G.; Gao, W.; Liu, S.; Zhong, L. The Poisoning Effect of Sc or Zr in Grain Refinement of Al-Si-Mg Alloy with Al-Ti-B. Mater. Lett. 2021, 302, 130428. [Google Scholar] [CrossRef]
- Huang, J.; Feng, L.; Li, C.; Huang, C.; Li, J.; Friedrich, B. Mechanism of Sc Poisoning of Al-5Ti-1B Grain Refiner. Scr. Mater. 2020, 180, 88–92. [Google Scholar] [CrossRef]
- Gyarmati, G.; Fegyverneki, G.; Kéri, Z.; Molnár, D.; Tokár, M.; Varga, L.; Mende, T. Controlled Precipitation of Intermetallic (Al,Si)3Ti Compound Particles on Double Oxide Films in Liquid Aluminum Alloys. Mater. Charact. 2021, 181, 111467. [Google Scholar] [CrossRef]
- Gyarmati, G.; Bubonyi, T.; Fegyverneki, G.; Tokár, M.; Mende, T. Interactions of Primary Intermetallic Compound Particles and Double Oxide Films in Liquid Aluminum Alloys. Intermetallics 2022, 149, 107681. [Google Scholar] [CrossRef]
- Gurtaran, M.; Uludağ, M. Effect of Ti Addition Holding Time on Casting Quality and Mechanical Properties of A356 Alloy. SN Appl. Sci. 2020, 2, 1833. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Zhang, L.; Liu, X. Grain Refinement of A356 Alloy by Al-Ti-B-C Master Alloy and Its Effect on Mechanical Properties. Mater. Des. 2013, 47, 522–528. [Google Scholar] [CrossRef]
- Li, D.; Yan, X.; Fan, Y.; Liu, G.; Nie, J.; Liu, X.; Liu, S. An Anti Si/Zr-Poisoning Strategy of Al Grain Refinement by the Evolving Effect of Doped Complex. Acta Mater. 2023, 249, 118812. [Google Scholar] [CrossRef]
- Aryshenskii, E.; Lapshov, M.; Hirsch, J.; Konovalov, S.; Bazhenov, V.; Drits, A.; Zaitsev, D. Influence of the Small Sc and Zr Additions on the As-Cast Microstructure of Al–Mg–Si Alloys with Excess Silicon. Metals 2021, 11, 1797. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Wang, B.; Xue, C.; Liu, X. Improving Mechanical Properties of Al–Si–Cu–Mg Alloys by Microallying Sc Using Thermodynamic Calculations. Calphad 2022, 76, 102394. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Zhu, C.; Xue, J.; Guo, Z.; Zhang, Y.; Li, X. Influence of the Interaction between Si and Sc on the Microstructure and Tensile Properties of as Casted Al-Si-Sc Alloys. J. Alloys Compd. 2023, 932, 167650. [Google Scholar] [CrossRef]
- Ramli, R.; Talari, M.K.; Arawi, A.Z.O. Microstructure and Mechanical Properties of Al-Si Cast Alloy Grain Refined with Ti-B-Sr-Sc-Mg. In Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering (CHUSER 2011), Penang, Malaysia, 5–6 December 2011; pp. 692–695. [Google Scholar]
- Puparattanapong, K.; Pandee, P.; Boontein, S.; Limmaneevichitr, C. Fluidity and Hot Cracking Susceptibility of A356 Alloys with Sc Additions. Trans. Indian Inst. Met. 2018, 71, 1583–1593. [Google Scholar] [CrossRef]
- Patakham, U.; Kajornchaiyakul, J.; Limmaneevichitr, C. Grain Refinement Mechanism in an Al-Si-Mg Alloy with Scandium. J. Alloys Compd. 2012, 542, 177–186. [Google Scholar] [CrossRef]
- Ding, J.; Lu, C.; Sun, Y.; Cui, C.; Zhao, E. Refining and Modification Effects of (Al, Zr, Si)-Al4Sr on Al-7Si-0.5Mg Alloy. J. Mater. Res. Technol. 2021, 15, 1604–1612. [Google Scholar] [CrossRef]
- Cui, X.L.; Wu, Y.Y.; Gao, T.; Liu, X.F. Preparation of a Novel Al-3B-5Sr Master Alloy and Its Modification and Refinement Performance on A356 Alloy. J. Alloys Compd. 2014, 615, 906–911. [Google Scholar] [CrossRef]
- Apparao, K.C.; Bannaravuri, P.K.; Pulisheru, K.S.; Francis, E.D.; Sunny, K.A.; Rao, G.B.; Daniel, P.F.; Birru, A.K. Effect of Novel Grain Refiner and Ni Alloying Additions on Microstructure and Mechanical Properties of Al-Si 9.8-Cu 3.4 HPDC Castings—Optimization Using Multi Criteria Decision Making Approach. Mater. Sci. 2022, 40, 9–24. [Google Scholar] [CrossRef]
- Xiao, F.; Wu, M.; Wang, Y.; Wang, S.; Shu, D.; Wang, D.; Zhu, G.; Mi, J.; Sun, B. Design of Newly Effective Grain Refiner for Aluminum Based on Medium-Entropy Metal Diboride. Vacuum 2022, 205, 111462. [Google Scholar] [CrossRef]
- Li, R.; Feng, Y.; Fu, Y.; Zhao, S.; Wang, L.; Guo, E. Effect of Composite Refining Modifier on Microstructure and Properties of AlSi10Mg Alloy. J. Mater. Eng. Perform. 2022, 32. [Google Scholar] [CrossRef]
- Narducci, C.; Antunes, A.S.; Abdalla, A.J. Effect of the Heterogeneous Nucleation of the Primary α-Al Grain via the Al-4Nb-0.5B Master Alloy in Al-Si Alloys with High Fe Contents. Mater. Res. 2021, 24, e2020544. [Google Scholar] [CrossRef]
- Nowak, M.; Bolzoni, L.; Hari Babu, N. Grain Refinement of Al-Si Alloys by Nb-B Inoculation. Part I: Concept Development and Effect on Binary Alloys. Mater. Des. 2015, 66, 366–375. [Google Scholar] [CrossRef]
- Bolzoni, L.; Hari Babu, N. Refinement of the Grain Size of the LM25 Alloy (A356) by 96Al-2Nb-2B Master Alloy. J. Mater. Process. Technol. 2015, 222, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Bolzoni, L.; Nowak, M.; Hari Babu, N. Grain Refinement of Al-Si Alloys by Nb-B Inoculation. Part II: Application to Commercial Alloys. Mater. Des. 2015, 66, 376–383. [Google Scholar] [CrossRef]
- Narducci, C.J.; Brollo, G.L.; Siqueira, R.H.M.; Antunes, A.S.; Abdalla, A.J. Effect of Nb Addition on the Size and Morphology of the β-Fe Precipitates in Recycled Al-Si Alloys. Sci. Rep. 2021, 11, 9613. [Google Scholar] [CrossRef]
- Taylor, J.A. Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys. Procedia Mater. Sci. 2012, 1, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Shabestari, S.G.; Mahmudi, M.; Emamy, M.; Campbell, J. Effect of Mn and Sr on Intermetallics in Fe-Rich Eutectic Al-Si Alloy. Int. J. Cast Met. Res. 2002, 15, 17–24. [Google Scholar] [CrossRef]
- Szymczak, T.; Gumienny, G.; Klimek, L.; Goły, M.; Szymszal, J.; Pacyniak, T. Characteristics of Al-Si Alloys with High Melting Point Elements for High Pressure Die Casting. Materials 2020, 13, 4861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, D.; Nagaumi, H.; Zhou, Y.; Yu, W.; Chong, X.; Li, X.; Zhang, H. Morphology, Thermal Stability, Electronic Structure and Mechanical Properties of α-AlFeMnSi Phases with Varying Mn/Fe Atomic Ratios: Experimental Studies and DFT Calculations. J. Alloys Compd. 2022, 901, 163523. [Google Scholar] [CrossRef]
- Tian, N.; Wang, G.; Zhou, Y.; Liu, C.; Liu, K.; Zhao, G.; Zuo, L. Phase Formation and Microstructure Evolution of Al-5Si-0.8Mg Alloys with Different Mn Concentrations. Metals 2021, 11, 308. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, J.; Damoah, L.; Robertson, D.G. Removal of Iron from Aluminum: A Review. Miner. Process. Extr. Metall. Rev. 2012, 33, 99–157. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Doty, H.W.; Kaufman, M.J. The Effects of Mn Additions on the Microstructure and Mechanical Properties of Al-Si-Cu Casting Alloys. Mater. Sci. Eng. A 2008, 488, 496–504. [Google Scholar] [CrossRef]
- Jeong, C.Y.; Kang, C.; Cho, J. Effect of Alloying Elements on Mechanical Properties for A356 Casting Alloy. Adv. Mater. Res. 2007, 26–28, 111–114. [Google Scholar] [CrossRef]
- Kuchariková, L.; Medvecká, D.; Tillová, E.; Belan, J.; Kritikos, M.; Chalupová, M.; Uhríčik, M. The Effect of the β-Al5FeSi Phases on Microstructure, Mechanical and Fatigue Properties in A356.0 Cast Alloys with Higher Fe Content without Additional Alloying of Mn. Materials 2021, 14, 1943. [Google Scholar] [CrossRef]
- Dinnis, C.M.; Taylor, J.A.; Dahle, A.K. Interactions between Iron, Manganese, and the Al-Si Eutectic in Hypoeutectic Al-Si Alloys. Metall. Mater. Trans. A 2006, 37, 3283–3291. [Google Scholar] [CrossRef]
- Chen, H.L.; Chen, Q.; Du, Y.; Bratberg, J.; Engström, A. Update of Al-Fe-Si, Al-Mn-Si and Al-Fe-Mn-Si Thermodynamic Descriptions. Trans. Nonferrous Met. Soc. China 2014, 24, 2041–2053. [Google Scholar] [CrossRef]
- Švecová, I.; Tillová, E.; Kuchariková, L.; Knap, V. Possibilities of Predicting Undesirable Iron Intermetallic Phases in Secondary Al-Alloys. Transp. Res. Procedia 2021, 55, 797–804. [Google Scholar] [CrossRef]
- Dunn, R. Aluminum Melting Problems and Their Influence on Furnace Selection. Die Cast. Eng. B 1965, 9, 8–30. [Google Scholar]
- Wang, B.; Wang, J.; Liu, X.; Li, Q.; Liu, X. Uncovering the Effects of Neutralizing Elements (Co, Mn and Cr) on the Fe-Rich Intermetallic Formation in Al-Si-Cu Alloys. Mater. Sci. Eng. A 2022, 858, 144090. [Google Scholar] [CrossRef]
- Kim, H.Y.; Han, S.W.; Lee, H.M. The Influence of Mn and Cr on the Tensile Properties of A356-0.20Fe Alloy. Mater. Lett. 2006, 60, 1880–1883. [Google Scholar] [CrossRef]
- Kumar, L.; Cheol, J.; Hui, J.; Kwang, S.S. Effects of Cr and Ti Addition on Mechanical Properties and Thermal Conductivity of Al–7Si–3Mg Die-casting Alloys. Met. Mater. Int. 2022, 29, 204–214. [Google Scholar] [CrossRef]
- Liu, N.; Jiang, B.; Wang, Y.; Ji, Z.; Hu, M.; Xu, H. Influence of Trace Amount Chromium on Microstructure and Corrosion Behavior of A356-5vol.%TiB2 Alloy. Mater. Lett. 2022, 314, 131798. [Google Scholar] [CrossRef]
- Ling, H.; Shi, H.; Du, X.; Zan, J.; Liu, J. Effect of Chromium Content on Microstructure and Properties of Casting Al-7Si-0.35Mg-0.02Sr Alloy. Materwiss. Werksttech. 2022, 53, 1229–1241. [Google Scholar] [CrossRef]
- Liang, Y.; Cui, C.; Geng, H.; Liu, L.; Zhang, S.; Jin, R. Synergistic Effects of Cr and Sr Addition on the Mechanical and Corrosion Properties of A356.2 Alloy. Mater. Charact. 2022, 191, 112152. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Wu, Y.; Wei, Z.; Liu, X. Supportive Strengthening Role of Cr-Rich Phase on Al-Si Multicomponent Piston Alloy at Elevated Temperature. Mater. Sci. Eng. A 2011, 528, 4427–4430. [Google Scholar] [CrossRef]
- Wang, X.; Ma, P.; Meng, Z.; Zhang, S.; Liu, X.; Wang, C.; Wang, H. Effect of Trace Cr Alloying on Centerline Segregations in Sub-Rapid Solidified Al–Mg–Si (AA6061) Alloys Fabricated by Twin-Roll Casting. Mater. Sci. Eng. A 2021, 825, 141896. [Google Scholar] [CrossRef]
- Ludwig, T.H.; Schaffer, P.L.; Arnberg, L. Influence of Vanadium on the Microstructure of A356 Foundry Alloy. In Light Metals 2013; Sadler, B., Ed.; The Minerals, Metals & Materials Society: Pittsburgh, PA, USA, 2016; pp. 1023–1028. [Google Scholar]
- Lin, B.; Li, H.; Xu, R.; Xiao, H.; Zhang, W.; Li, S. Effects of Vanadium on Modification of Iron-Rich Intermetallics and Mechanical Properties in A356 Cast Alloys with 1.5 Wt.% Fe. J. Mater. Eng. Perform. 2019, 28, 475–484. [Google Scholar] [CrossRef]
- Medved, J.; Kores, S.; Vončina, M. Development of Innovative Al–Si–Mn–Mg Alloys with High Mechanical Properties. In Light Metals 2018; Martin, O., Ed.; The Minerals, Metals & Materials Society: Pittsburgh, PA, USA, 2018; pp. 373–380. [Google Scholar]
- Morri, A.; Ceschini, L.; Messieri, S.; Cerri, E.; Toschi, S. Mo Addition to the A354 (Al–Si–Cu–Mg) Casting Alloy: Effects on Microstructure and Mechanical Properties at Room and High Temperature. Metals 2018, 8, 393. [Google Scholar] [CrossRef] [Green Version]
- El Sebaie, O.; Samuel, A.M.; Samuel, F.H.; Doty, H.W. The Effects of Mischmetal, Cooling Rate and Heat Treatment on the Hardness of A319.1, A356.2 and A413.1 Al-Si Casting Alloys. Mater. Sci. Eng. A 2008, 486, 241–252. [Google Scholar] [CrossRef]
- Petrov, I.A.; Shlyaptseva, A.D. Effect of REE on the Solidification of Eutectic Silumin. Russ. Metall. 2022, 2022, 204–210. [Google Scholar] [CrossRef]
- Tao, C.; Huang, H.; Yuan, X.; Yue, C.; Su, M.; Zuo, X. Effect of Y Element on Microstructure and Hot Tearing Sensitivity of As-Cast Al–4.4Cu–1.5Mg–0.15Zr Alloy. Int. J. Met. 2022, 16, 1010–1019. [Google Scholar] [CrossRef]
- Cardinale, A.M.; Macciò, D.; Luciano, G.; Canepa, E.; Traverso, P. Thermal and Corrosion Behavior of as Cast Al-Si Alloys with Rare Earth Elements. J. Alloys Compd. 2017, 695, 2180–2189. [Google Scholar] [CrossRef]
- Stroh, J.; Sediako, D.; Weiss, D. The Effect of Rare Earth Mischmetal on the High Temperature Tensile Properties of an A356 Aluminum Alloy. In Light Metals 2021; Perander, L., Ed.; The Minerals, Metals & Materials Society: Pittsburgh, PA, USA, 2021; pp. 184–191. [Google Scholar]
- Zhu, M.; Jian, Z.; Yang, G.; Zhou, Y. Effects of T6 Heat Treatment on the Microstructure, Tensile Properties, and Fracture Behavior of the Modified A356 Alloys. Mater. Des. 2012, 36, 243–249. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Abdelaziz, M.H.; Samuel, A.M.; Doty, H.W.; Samuel, F.H. Effect of Rare Earth Metals on the Mechanical Properties and Fractography of Al–Si-Based Alloys. Int. J. Met. 2020, 14, 108–124. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Qian, Z.; Liu, X. Effect of Co-Addition of RE, Fe and Mn on the Microstructure and Performance of A390 Alloy. Mater. Sci. Eng. A 2009, 527, 146–149. [Google Scholar] [CrossRef]
- Heo, U.; Han, D.; Kim, S.; Mo, C.B. Microstructure, Mechanical, and Corrosion Properties of Al–10Si and Al–10Si–2Cu Alloys with Different La Contents. Mater. Today Commun. 2022, 32, 104005. [Google Scholar] [CrossRef]
- Song, Z.; Li, D.; Liu, W.; Yang, H.; Cao, Y.; Bi, G. Effect of La and Sc Co-Addition on the Mechanical Properties and Thermal Conductivity of as-Cast Al-4.8% Cu Alloys. Metals 2021, 11, 1866. [Google Scholar] [CrossRef]
- Wu, X.; Luo, W.; Zhang, H.; Zhang, H.; Jiang, H. Effect of La Addition on Microstructure and Mechanical Properties of Hypoeutectic Al-7Si Aluminum Alloy. China Foundry 2021, 18, 481–487. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Jin, H.; Sui, Y.; Jiang, Y.; Wang, Q. Effect of Lanthanum Content on Microstructure and Mechanical Properties of Al-5Mg-2Si-0.6Mn Alloy in Squeeze Casting. J. Mater. Res. Technol. 2021, 15, 6025–6033. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Yang, Z.; Qiu, C.; Tan, K. Effect of Ce Addition and Heat Treatment on Microstructure Evolution and Tensile Properties of Industrial A357 Cast Alloy. Metals 2020, 10, 1100. [Google Scholar] [CrossRef]
- Qiu, M.; Du, X.; Zhang, Z.; Chen, C.; Lei, X. The Effects of Combined Addition of Ce and Yb on Microstructure and Mechanical Properties of Al–Si–Mg–Cu–Cr Casting Alloy. J. Mater. Eng. Perform. 2022, 32, 3443–3451. [Google Scholar] [CrossRef]
- Mao, F.; Yan, G.; Xuan, Z.; Cao, Z.; Wang, T. Effect of Eu Addition on the Microstructures and Mechanical Properties of A356 Aluminum Alloys. J. Alloys Compd. 2015, 650, 896–906. [Google Scholar] [CrossRef]
- Amer, S.M.; Glavatskikh, M.V.; Barkov, R.Y.; Khomutov, M.G.; Pozdniakov, A.V. Phase Composition and Mechanical Properties of Al-Si Based Alloys with Yb or Gd Addition. Mater. Lett. 2022, 320, 132320. [Google Scholar] [CrossRef]
- Li, D.; Cui, C.; Wang, X.; Wang, Q.; Chen, C.; Liu, S. Microstructure Evolution and Enhanced Mechanical Properties of Eutectic Al-Si Die Cast Alloy by Combined Alloying Mg and La. Mater. Des. 2016, 90, 820–828. [Google Scholar] [CrossRef]
- Qiu, C.; Miao, S.; Li, X.; Xia, X.; Ding, J.; Wang, Y.; Zhao, W. Synergistic Effect of Sr and La on the Microstructure and Mechanical Properties of A356.2 Alloy. Mater. Des. 2017, 114, 563–571. [Google Scholar] [CrossRef]
- Wu, D.; Kang, J.; Feng, Z.; Su, R.; Liu, C.; Li, T.; Wang, L. Utilizing a Novel Modifier to Realize Multi-Refinement and Optimized Heat Treatment of A356 Alloy. J. Alloys Compd. 2019, 791, 628–640. [Google Scholar] [CrossRef]
- Ding, W.; Gou, L.; Hu, L.; Zhang, H.; Zhao, W.; Ma, J.; Qiao, J.; Li, X. Modification of Eutectic Si in Hypoeutectic Al-Si Alloy with Novel Al-3Ti-4.35La Master Alloy. J. Alloys Compd. 2022, 929, 167350. [Google Scholar] [CrossRef]
- Luo, Q.; Li, X.; Li, Q.; Yuan, L.; Peng, L.; Pan, F.; Ding, W. Achieving Grain Refinement of α-Al and Si Modification Simultaneously by La–B–Sr Addition in Al–10Si Alloys. J. Mater. Sci. Technol. 2023, 135, 97–110. [Google Scholar] [CrossRef]
- Alkahtani, S.A.; Elgallad, E.M.; Tash, M.M.; Samuel, A.M.; Samuel, F.H. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys. Materials 2016, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, M.G.; Samuel, A.M.; Doty, H.W.; Valtierra, S.; Samuel, F.H. Effect of Solidification Rate and Rare Earth Metal Addition on the Microstructural Characteristics and Porosity Formation in A356 Alloy. Adv. Mater. Sci. Eng. 2017, 2017, 5086418. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, X.; Xu, S.; Nagaumi, H.; Li, X. Improvement of Mechanical Properties in Micro-Alloying Al-Si-Mg-Zn Cast Alloy. Mater. Lett. 2021, 283, 128810. [Google Scholar] [CrossRef]
- Huang, H.; Hu, C.; Song, D.; Jia, Z.; Zhou, N. Microstructure Characteristics and Elevated-Temperature Tensile Properties of Al-7Si-0.3Mg Alloys with Zr and Hf Addition. J. Mater. Eng. Perform. 2021, 30, 9059–9066. [Google Scholar] [CrossRef]
- Zamzu, C.O.; Mbuya, T.O.; Adenya, C.A.; Ngigi, T. Effect of Transition Elements Additions on Microstructure and Tensile Properties of a Secondary Al-7Si-Mg Cast Aluminum Alloy. Int. J. Eng. Technol. Sci. Innov. 2021, 6, 91–101. [Google Scholar] [CrossRef]
- Hu, P.; Liu, K.; Pan, L.; Chen, X. Effects of Individual and Combined Additions of Transition Elements (Zr, Ti and V) on the Microstructure Stability and Elevated-Temperature Properties of Al–Cu 224 Cast Alloys. Mater. Sci. Eng. A 2023, 867, 144718. [Google Scholar] [CrossRef]
- Li, D.; Liu, K.; Rakhmonov, J.; Chen, X. Enhanced Thermal Stability of Precipitates and Elevated-Temperature Properties via Microalloying with Transition Metals (Zr, V and Sc) in Al–Cu 224 Cast Alloys. Mater. Sci. Eng. A 2021, 827, 142090. [Google Scholar] [CrossRef]
- Baradarani, B.; Raiszadeh, R. Precipitation Hardening of Cast Zr-Containing A356 Aluminium Alloy. Mater. Des. 2011, 32, 935–940. [Google Scholar] [CrossRef]
- Kamińska, J.; Angrecki, M.; Dudek, P. The Effect of Zirconium as an Alloying Additive on the Microstructure and Properties of AlSi9Mg Alloy Cast in Sand Moulds. Arch. Foundry Eng. 2022, 22, 5–13. [Google Scholar] [CrossRef]
- Huang, H.; Dong, Y.; Xing, Y.; Jia, Z.; Liu, Q. Low Cycle Fatigue Behaviour at 300 °C and Microstructure of Al-Si-Mg Casting Alloys with Zr and Hf Additions. J. Alloys Compd. 2018, 765, 1253–1262. [Google Scholar] [CrossRef]
- Arriaga-Benitez, R.I.; Pekguleryuz, M. The Synergistic Effects of Nano-Sized α-Al(Mn,Cr,Fe)Si and Al–Si–Zr Dispersoids on the Creep Behavior Al–Si–Mg–Cu (Mn, Cr, Zr) Diesel Engine Alloy. Mater. Sci. Eng. A 2023, 872, 144949. [Google Scholar] [CrossRef]
- Zhang, Z.; Arici, A.; Breton, F.; Chen, X. Influence of Transition Elements (Zr, V, and Mo) on Microstructure and Tensile Properties of AlSi8Mg Casting Alloys. Can. Metall. Q. 2023. [Google Scholar] [CrossRef]
- Gariboldi, E.; Confalonieri, C.; Colombo, M. High Temperature Behavior of Al-7Si-0.4Mg Alloy with Er and Zr Additions. Metals 2021, 11, 879. [Google Scholar] [CrossRef]
- Colombo, M.; Albu, M.; Gariboldi, E.; Hofer, F. Microstructural Changes Induced by Er and Zr Additions to A356 Alloy Investigated by Thermal Analyses and STEM Observations. Mater. Charact. 2020, 161, 110117. [Google Scholar] [CrossRef]
- Huang, H.; Li, W.; Hu, C.; Ding, L.; Jia, Z.; Zhou, N. Dispersoid Characteristics and Elevated Temperature Creep Resistance of Al–Si–Mg Cast Alloy with Zr Addition. Mater. Sci. Eng. A 2022, 836, 142570. [Google Scholar] [CrossRef]
- Shi, Z.M.; Wang, Q.; Zhao, G.; Zhang, R.Y. Effects of Erbium Modification on the Microstructure and Mechanical Properties of A356 Aluminum Alloys. Mater. Sci. Eng. A 2015, 626, 102–107. [Google Scholar] [CrossRef]
- Li, G.; Liao, H.; Zheng, J.; Chen, H.; Lu, L.; Yang, L. Micro-Alloying Effects of Mn and Zr on the Evolution of Ageing Precipitates and High Temperature Strength of Al-11.5Si–4Cu Alloy after a Long-Time Heat Exposure. Mater. Sci. Eng. A 2021, 828, 142121. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Wang, B.; Xue, C.; Liu, X. Quantifying the Effects of Sc and Ag on the Microstructure and Mechanical Properties of Al–Cu Alloys. Mater. Sci. Eng. A 2021, 831, 142355. [Google Scholar] [CrossRef]
- Wei, Q.; Xu, H.; Bai, X.; Lian, P.; Wang, Y.; Mao, H.; Wang, C. Effect of Sc on Microstructure and Properties of A357 Alloy under Different Casting Conditions. J. Mater. Res. Technol. 2022, 20, 2051–2059. [Google Scholar] [CrossRef]
- Li, G.; Liao, H.; Zheng, J.; Chen, H.; Qian, L.; Yang, M. Sc-Induced Great Increase in High Temperature Strength of Al-Si-Cu Heat-Resistant Alloy. J. Alloys Compd. 2022, 925, 166622. [Google Scholar] [CrossRef]
- Pratheesh, K.; Ravi, M.; Kanjirathinkal, A.; Joseph, M.A. Effects of Sr and Pressure on Microstructure, Mechanical and Wear Properties of near Eutectic Al–Si Piston Alloys. Int. J. Cast Met. Res. 2015, 28, 301–309. [Google Scholar] [CrossRef]
- Demirtaş, H.; Karakulak, E.; Babu, N.H. Understanding the Effect of Ni Content on Microstructure and Mechanical Properties of A384 HPDC Alloy. J. Alloys Compd. 2022, 896, 163111. [Google Scholar] [CrossRef]
- Abdelaziz, M.H.; Elgallad, E.M.; Doty, H.W.; Samuel, F.H. Strengthening Precipitates and Mechanical Performance of Al–Si–Cu–Mg Cast Alloys Containing Transition Elements. Mater. Sci. Eng. A 2021, 820, 141497. [Google Scholar] [CrossRef]
- Lattanzi, L.; Giovanni, M.T.; Giovagnoli, M.; Fortini, A.; Merlin, M.; Casari, D.; Di Sabatino, M.; Cerri, E.; Garagnani, G.L. Room Temperature Mechanical Properties of A356 Alloy with Ni Additions from 0.5 Wt to 2 Wt%. Metals 2018, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Ozyurek, D.; Yıldırım, M.; Yavuzer, B.; Simsek, I.; Tuncay, T. The Effect of Ni Addition on Microstructure and Mechanical Properties of Cast A356 Alloy Modified with Sr. Met. Mater. 2021, 59, 391–399. [Google Scholar] [CrossRef]
- García-Hinojosa, J.A.; González, C.R.; González, G.M.; Houbaert, Y. Structure and Properties of Al-7Si-Ni and Al-7Si-Cu Cast Alloys Nonmodified and Modified with Sr. J. Mater. Process. Technol. 2003, 143–144, 306–310. [Google Scholar] [CrossRef]
- Casari, D.; Ludwig, T.H.; Merlin, M.; Arnberg, L.; Garagnani, G.L. The Effect of Ni and V Trace Elements on the Mechanical Properties of A356 Aluminium Foundry Alloy in As-Cast and T6 Heat Treated Conditions. Mater. Sci. Eng. A 2014, 610, 414–426. [Google Scholar] [CrossRef]
- Casari, D.; Ludwig, T.H.; Merlin, M.; Arnberg, L.; Garagnani, G.L. Impact Behavior of A356 Foundry Alloys in the Presence of Trace Elements Ni and V. J. Mater. Eng. Perform. 2015, 24, 894–908. [Google Scholar] [CrossRef]
- Gursoy, O.; Colak, M.; Tur, K.; Dispinar, D. Characterization of Properties of Vanadium, Boron and Strontium Addition on HPDC of A360 Alloy. Mater. Chem. Phys. 2021, 271, 124931. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, X.; Guo, J.; Liao, H.; Du, J. Effect of Ni Addition on the Microstructure and Mechanical Properties of 6101 Aluminum Alloy with High Electrical Conductivity. J. Mater. Eng. Perform. 2022, 31, 8923–8931. [Google Scholar] [CrossRef]
- Xavier, M.G.C.; Freitas, B.J.M.; Koga, G.Y.; Spinelli, J.E. Effects of Ni and Co on the Corrosion Resistance of Al-Si-Cu-Zn-Fe Alloys in NaCl Solution. Metals 2022, 12, 645. [Google Scholar] [CrossRef]
- Wang, R.; Wang, D.; Nagaumi, H.; Wu, Z.; Zhang, X.; Li, X. Effect of Zn Content on Corrosion Resistance of As-Cast Al-6Si-3Cu Alloy. Mater. Lett. 2022, 312, 131658. [Google Scholar] [CrossRef]
- Yongtao, X.; Zhifeng, Z.; Zhihua, G.; Yuelong, B.; Purui, Z.; Weimin, M. Effect of Main Elements (Zn, Mg and Cu) on the Microstructure, Castability and Mechanical Properties of 7xxx Series Aluminum Alloys with Zr and Sc. Mater. Charact. 2021, 182, 111559. [Google Scholar] [CrossRef]
- Akopyan, T.K.; Belov, N.A.; Letyagin, N.V.; Milovich, F.O.; Lukyanchuk, A.A.; Fortuna, A.S. Influence of Indium Trace Addition on the Microstructure and Precipitation Hardening Response in Al–Si–Cu Casting Aluminum Alloy. Mater. Sci. Eng. A 2022, 831, 142329. [Google Scholar] [CrossRef]
- Fang, N.; Zou, C.; Wei, Z.; Wang, H.; Zhang, R.; Ran, Z.; Chang, T. Microstructural Evolution and Mechanical Properties of Al-Si-Cu-(Ge)-(Mg) Alloy Solidified under High Pressure. Mater. Sci. Eng. A 2021, 827, 142065. [Google Scholar] [CrossRef]
- Li, G.; Liao, H.; Teng, H.; Yang, L.; Guo, H. Refining Effect of Trace Addition of B and the Impurity Elements in Al-Si-Cu-Mn-Ni Heat-Resistant Alloy on Primary Mn-Rich Phase. Mater. Lett. 2021, 311, 131563. [Google Scholar] [CrossRef]
Optimized Alloy Composition (wt%) | Condition | UTS (MPa) | A (%) | Q (MPa) | Casting Technique | Ref. |
---|---|---|---|---|---|---|
Al-6.83Si-0.28Mg-0.10Fe-0.11Ti-0.003Cu-0.004Mn-0.023Sr-0.016B | T6 | 249.9 | 3.3 | 327.7 | Permanent mold casting | [4] |
Al-7.01Si-0.37Mg-0.08Fe-0.13Ti-0.01Sr | As cast | 276.0 | 6.9 | 401.6 | Permanent mold casting | [64] |
Al-(9.0–11.0)Si-(0.20–0.45)Mg-0.55Fe-0.15Ti-0.45Mn-0.25AlSr10 | As cast | 320.0 | 8.0 | 455.5 | Permanent mold casting | [65] |
Al-15Si-1Bi | As cast | 192.0 | 14.0 | 363.9 | Permanent mold casting | [57] |
Al-15Si-1Sb | As cast | 203.0 | 9.2 | 347.6 | Permanent mold casting | [57] |
Base Alloy Composition (wt%) | Optimum Grain Refiner Amount and Composition (wt%) | Average Grain Size (μm) | Casting Technique | Ref. |
---|---|---|---|---|
Commercially pure Al | 2.7% (Ti1/3Cr1/3V1/3)B2 | 35.0 | N.A. | [92] |
A356 | 0.5% Al-3B-5Sr | 300.0 | Permanent mold casting | [90] |
A356 | 0.10% Nb as 96Al-2Nb-2B | 150.0 | Permanent mold casting | [96] |
Al-1.0Si-0.3Mg | 0.15Zr-0.30Sc | 140.0 | Permanent mold casting | [83] |
Al-1.3Si-0.5Mg | 0.15Zr-0.30Sc | 219.0 | Permanent mold casting | [83] |
Al-4.02Si-0.02Fe | 1.03Sc | 31.7 | Permanent mold casting | [85] |
Al-6.0Si | 0.10% Nb-KBF4 | 500.0 | Solidification in glass wool-insulated graphite crucible | [95] |
Al-(6–8)Si-0.3Mg-0.5Fe-0.11Ti-0.003Cu-0.005Mn-0.003Zn | 0.10% Nb-KBF4 | 100.0 | Solidification in glass wool-insulated graphite crucible | [97] |
Al-6.83Si-0.34Mg-0.07Fe-0.11Ti-0.24Sr | 0.20% Al-3Ti-1B-0.2C | 167.0 | Permanent mold casting | [81] |
Al-6.96Si-0.13Fe-0.005Cu | 0.10% Al-5Ti-1B | 118.0 | Permanent mold casting | [74] |
Al-7.40Si-0.35Mg-0.34Fe-0.06Ti-0.08Cu-0.06Mn | 0.15% Al-5Ti-1B | 270.2 | Permanent mold casting | [73] |
Al-7.0Si-0.4Mg | 0.10% Al-2Ti-0.2B-0.3C | 85.0 | Permanent mold casting | [82] |
Al-7.0Si-0.5Mg | 3% Al-9Zr-0.9Sr | 122.0 | Permanent mold casting | [89] |
Al-7.0Si-1.0Fe | 0.05% Al-4Nb-0.5B | 104.0 | Permanent mold casting | [94] |
Al-9.0Si-1.0Fe | 0.05% Al-4Nb-0.5B | 120.0 | Permanent mold casting | [94] |
Al-12.0Si-1.0Fe | 0.05% Al-4Nb-0.5B | 222.0 | Permanent mold casting | [94] |
Al-5.0Cu-0.15Zr | 0.50% Al-2Ti-0.2B-0.3C | 63.0 | Permanent mold casting | [82] |
Morphology | Phase | Typical Conditions |
---|---|---|
β—acicular | Al5FeSi (eutectic) | 0.05% < Fe < 0.7% |
Al5FeSi (primary) | Fe > 0.7% | |
α—Chinese script | Al15Fe3Si2 | Presence of Fe |
Al15(Fe,Mn)3Si2 | Mn > 0.2% in the presence of Fe | |
π—Chinese script | Al9FeMg3Si5 | Presence of Mg and Sr |
Al8FeMg3Si6 | Fe > Mg | |
Al10FeMg4Si4/Al5FeMg8Si6 | Presence of Mg | |
Acicular | Al7FeCu2 | Presence of Cu |
Al8CuMg8Si6 | Cu > 1%, Mg > 2xCu | |
Agglomerate | Al9FeNi | Ni > 0.1% in the presence of Fe |
Al5Cu2Mg8Si6 | Presence of Mg, Cu and Si | |
Chinese script | Al9(Fe,Co)2 | Co > 0.1% in the presence of Fe |
Al8Fe2SiBe/Al4Fe2Be5 | Presence of Be | |
Al5Fe2Si/Al8Fe2Si | Presence of Mg, Cu or Zn | |
Polyhedral | Al2(Fe,Cr)5Si8 | Cr > 0.1% in the presence of Fe |
Al13(Fe,Cr)4Si4 | Cr > 0.1% in the presence of Fe |
Optimized Alloy Composition (wt%) | Condition | UTS (MPa) | A (%) | Q (MPa) | Casting Technique | Ref. |
---|---|---|---|---|---|---|
A356-0.2Fe-0.13Mn-0.13Cr | T6 | 280.0 | 11.8 | 440.8 | Permanent mold casting | [113] |
Al-0.7Si-1.2Mg-0.1Fe-0.07Cr | T6 | 338.0 | 18.0 | 526.3 | Twin-roll casting | [119] |
Al-6.5Si-0.45Mg-0.5Fe-3.75Cu-0.65Mn | T6 | 460.0 | 0.5 | 408.0 | Sand casting | [105] |
Al-7.45Si-2.84Mg-0.50Fe-0.11Cu-0.13Ti-0.14Mn | As cast | 350.0 | 3.1 | 423.7 | Permanent mold casting | [114] |
Al-9.5Si-0.35Mg-0.12Fe-0.13Ti-0.5Mn | T6 | 275.0 | 8.0 | 410.5 | N.A. | [106] |
Optimized Alloy Composition (wt%) | Condition | UTS (MPa) | A (%) | Q (MPa) | Casting Technique | Ref. |
---|---|---|---|---|---|---|
A356-0.5(Al-6Sr-7La) | As cast | 230.0 | 12.0 | 391.9 | Permanent mold casting | [141] |
A356-0.4(Al-5Sr-8Ce) | T6 | 280.0 | 10.0 | 430.0 | Permanent mold casting | [142] |
Al-2.05Si-5.16Mg-0.62Mn-0.09La | As cast | 275.0 | 5.5 | 386.1 | Squeeze casting | [135] |
Al-5.98Si-0.63Mg-0.13Fe-0.62Cu-0.19Cr-0.22Ce-0.17Yb | T6 | 336.8 | 7.5 | 468.1 | Permanent mold casting | [137] |
Al-6.9Si-0.29Mg-0.099Fe-0.18Ti-0.7MM 1 | T6 | 285.0 | 10.3 | 436.6 | Permanent mold casting | [129] |
Al-6.98Si-0.35Mg-0.08Fe-0.13Ti-0.99La | As cast | 273.0 | 6.9 | 399.0 | Permanent mold casting | [64] |
Al-7.0Si-0.1La | T6 | 350.2 | 12.8 | 516.0 | Permanent mold casting | [134] |
Al-7.0Si-0.2(Al-3Ti-4.35La) | As cast | 178.0 | 12.0 | 339.9 | Permanent mold casting | [143] |
Al-(9.0–11.0)Si-(0.20–0.45)Mg-0.55Fe-0.15Ti-0.45Mn-0.25AlLa12 | As cast | 230.0 | 8.2 | 367.1 | Permanent mold casting | [65] |
Al-9.65Si-0.61Mg-0.12Fe-0.31Mn-0.15Mo-1.04Zn-0.13Zr-0.06La-0.06Ce | Aged | 362.0 | 3.8 | 449.0 | High-pressure die casting | [147] |
Al-10.0Si-0.015Sr-0.02B-0.05La | As cast | 200.0 | 5.5 | 311.1 | Permanent mold casting | [144] |
Al-(12.54–12.68)Si-(3.52–3.63)Mg-(0.78–0.82)Fe-(0.47–0.54)La | T6 | 312.0 | 4.3 | 406.7 | Permanent mold casting | [140] |
Al-7.17Si-0.474Mg-0.135Fe-0.142Ti-0.023V-0.16Ce | T6 | 325.0 | 4.5 | 423.0 | Permanent mold casting | [136] |
Al-7.1Si-2.9Mg-0.16Fe-0.095Eu | T6 | 265.0 | 14.7 | 440.1 | Permanent mold casting | [138] |
Al-4.85Cu-0.38La | As cast | 175.0 | 10.5 | 328.2 | Permanent mold casting | [133] |
Al-4.78Cu-0.37La-0.42Sc | As cast | 225.0 | 9.0 | 368.1 | Permanent mold casting | [133] |
Optimized Alloy Composition (wt%) | Condition | UTS (MPa) | A (%) | Q (MPa) | Casting Technique | Ref. |
---|---|---|---|---|---|---|
Al-0.42Si-0.58Mg-0.19Fe-0.097Cu-0.20Ni | HO 1 + CR 2 + T6 | 240.0 | 14.8 | 415.5 | Permanent mold casting | [174] |
Al-6.67Si-0.53Mg-0.19Fe-0.16Ti-0.56Cu-0.12Mn-0.07Cr-0.22V-0.10Zr-0.0156Sr | As cast | 145.0 | 7.8 | 278.8 | Permanent mold casting | [122] |
Al-7.01Si-0.62Mg-0.04Fe-0.08Ti-0.53Sc | T6 | 384.0 | 11.3 | 542.0 | Permanent mold casting | [163] |
Al-7.68Si-0.30Mg-0.14Fe-0.05Ti-0.51Mn-0.15Mo-0.25V-0.19Zr-0.012Sr | T6 | 214.4 | 5.0 | 319.2 | Permanent mold casting | [156] |
Al-8.33Si-0.36Mg-0.25Fe-0.096Ti-0.134Cu-0.27Mn-0.014Cr-0.12Zn-0.30Zr | As cast | 164.2 | 1.6 | 194.8 | Sand casting | [153] |
Al-9.77Si-0.63Mg-0.13Fe-0.059Ti-0.46Mn-0.20Cr-0.19Mo-0.22Zr | As cast | 142.0 | 7.9 | 276.6 | Permanent mold casting | [122] |
Al-10.1Si-0.65Mg-0.13Fe-0.066Ti-0.52Mn-0.19Cr-0.20Mo-0.003Zr | HIP 3 + T6 | 279.3 | 4.4 | 375.8 | Permanent mold casting | [149] |
Al-(9.0–11.0)Si-(0.20–0.45)Mg-0.55Fe-0.15Ti-0.45Mn-0.25AlSc2.2 | As cast | 235.0 | 8.6 | 375.2 | Permanent mold casting | [65] |
Al-11.5Si-0.30Mg-0.74Fe-3.82Cu-0.21Mn-0.28Ni-0.02Sr | T6 | 429.9 | 3.6 | 513.9 | High-pressure die casting | [166] |
Al-6.64Si-0.24Mg-0.08Fe-0.44Ni | T6 | 287.0 | N.A. | N.A. | Permanent mold casting | [168] |
Al-7.18Si-0.33Mg-0.59Fe-0.11Ti-1.05Ni-0.020Sr | T6 | 240.0 | 6.0 | 356.7 | Sand casting | [169] |
Al-6.9Si-0.34Mg-0.087Fe-0.061Ni-0.007V | T6 | 284.8 | 3.3 | 361.6 | Permanent mold casting | [171] |
Al-6.99Si-0.35Mg-0.094Fe-0.003Ni-0.108V | T6 | 289.5 | 3.6 | 372.9 | Permanent mold casting | [171] |
Al-4.78Cu-0.37La-0.42Sc | As cast | 225.0 | 9.0 | 368.1 | Permanent mold casting | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Callegari, B.; Lima, T.N.; Coelho, R.S. The Influence of Alloying Elements on the Microstructure and Properties of Al-Si-Based Casting Alloys: A Review. Metals 2023, 13, 1174. https://doi.org/10.3390/met13071174
Callegari B, Lima TN, Coelho RS. The Influence of Alloying Elements on the Microstructure and Properties of Al-Si-Based Casting Alloys: A Review. Metals. 2023; 13(7):1174. https://doi.org/10.3390/met13071174
Chicago/Turabian StyleCallegari, Bruna, Tiago Nunes Lima, and Rodrigo Santiago Coelho. 2023. "The Influence of Alloying Elements on the Microstructure and Properties of Al-Si-Based Casting Alloys: A Review" Metals 13, no. 7: 1174. https://doi.org/10.3390/met13071174
APA StyleCallegari, B., Lima, T. N., & Coelho, R. S. (2023). The Influence of Alloying Elements on the Microstructure and Properties of Al-Si-Based Casting Alloys: A Review. Metals, 13(7), 1174. https://doi.org/10.3390/met13071174