Effect of Friction Stir Welding on Short-Term Creep Response of Pure Titanium
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Properties of the Joint
3.2. Creep Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, R.P.; Dubey, S.; Singh, A.; Kumar, S. A review paper on friction stir welding process. Mater. Today Proc. 2021, 38, 6–11. [Google Scholar] [CrossRef]
- Reshad Seighalani, K.; Besharati Givi, M.K.; Nasiri, A.M.; Behemat, P. Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium. J. Mater. Eng. Perform. 2010, 19, 955–962. [Google Scholar] [CrossRef]
- Fujii, H.; Sun, Y.; Kato, H.; Nakata, K. Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints. Mater. Sci. Eng. A 2010, 527, 3386–3391. [Google Scholar] [CrossRef]
- Karna, S.; Cheepu, M.; Venkateswarulu, D.; Srikanth, V. Recent developments and research progress on friction stir welding of titanium alloys: An overview. IOP Conf. Ser. Mater. Sci. Eng. 2018, 330, 012068. [Google Scholar] [CrossRef]
- Lee, W.B.; Lee, C.Y.; Chang, W.S.; Yeon, Y.M.; Jung, S.B. Microstructural investigation of friction stir welded pure titanium. Mater. Lett. 2005, 59, 3315–3318. [Google Scholar] [CrossRef]
- Zhang, Y.; Sato, Y.S.; Kokawa, H.; Park, S.H.C.; Hirano, S. Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool. Mater. Sci. Eng. A 2008, 488, 25–30. [Google Scholar] [CrossRef]
- Xu, N.; Song, Q.; Bao, Y.; Jiang, Y.; Shen, J.; Cao, X. Twinning-induced mechanical properties’ modification of CP-Ti by friction stir welding associated with simultaneous backward cooling. Sci. Technol. Weld. Join. 2017, 7, 610–616. [Google Scholar] [CrossRef]
- Bahl, S.; Nithilaksh, P.L.; Suwas, S.; Kailas, S.V.; Chatterjee, K. Processing–microstructure–crystallographic texture–surface property relationships in friction stir processing of titanium. J. Mater. Eng. Perform. 2017, 26, 4206–4216. [Google Scholar] [CrossRef]
- Kang, D.S.; Lee, K.J. Recent R&D status on friction stir welding of Ti and its alloys. J. Weld. Join. 2015, 33, 1–7. [Google Scholar]
- Liu, H.; Nakata, K.; Yamamoto, N.; Liao, J. Friction stir welding of pure titanium lap joint. Sci. Technol. Weld. Join. 2010, 15, 428–432. [Google Scholar] [CrossRef]
- Fonda, R.W.; Knipling, K.E.; Levinson, A.J.; Feng, C.R. Enhancing the weldability of CP titanium friction stir welds with elemental foils. Sci. Technol. Weld. Join. 2019, 24, 617–623. [Google Scholar] [CrossRef]
- Giri, S.R.; Kumar Khamari, B.; Moharana, B.R. Joining of titanium and stainless steel by using different welding processes: A review. Mater. Today Proc. 2022, 66, 505–508. [Google Scholar] [CrossRef]
- Gadakh, V.S.; Badheka, V.J.; Mulay, A.S. Solid-state joining of aluminum to titanium: A review. Proc. Inst. Mech. Eng. Part L 2021, 235, 1757–1799. [Google Scholar] [CrossRef]
- Patel, S.; Fuse, K.; Gangvekar, K.; Badheka, V. Multi-response optimization of dissimilar Al-Ti alloy FSW using Taguchi-Grey relational analysis. Key Eng. Mater. 2020, 833, 35–39. [Google Scholar] [CrossRef]
- Pereira, V.F.; Fonseca, E.B.; Costa, A.M.S.; Bettini, J.; Lopes, E.S.N. Nanocrystalline structural layer acts as interfacial bond in Ti/Al dissimilar joints produced by friction stir welding in power control mode. Scr. Mater. 2020, 174, 80–86. [Google Scholar] [CrossRef]
- Asmael, M.B.A.; Glaissa, M.A.A. Effects of rotation speed and dwell time on the mechanical properties and microstructure of dissimilar aluminum-titanium alloys by friction stir spot welding (FSSW). Materwiss. Werksttech. 2020, 51, 1002–1008. [Google Scholar] [CrossRef]
- Elshaer, R.N.; Ibrahim, K.M. Applications of Titanium Alloys in Aerospace Manufacturing: A Brief Review. Bull. TIMS 2022, 111, 60–69. [Google Scholar] [CrossRef]
- Choi, S.-W.; Jeong, J.S.; Won, J.W.; Hong, J.K.; Choi, Y.S. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation. J. Mater. Sci. Technol. 2021, 66, 193–201. [Google Scholar] [CrossRef]
- Nicholson, W.J. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Chong, Y.; Poschmann, M.; Zhang, R.; Zhao, S.; Hooshmand, M.S.; Rothchild, E.; Olmsted, D.L.; Morris, J.W., Jr.; Chrzan, D.C.; Asta, M.; et al. Mechanistic basis of oxygen sensitivity in titanium. Sci. Adv. 2020, 6, eabc4060. [Google Scholar] [CrossRef]
- Gardner, H.M.; Gopon, P.; Magazzeni, C.M.; Radecka, A.; Fox, K.; Rugg, D.; Wade, J.; Armstrong, D.E.J.; Moody, M.P.; Bagot, P.A.J. Quantifying the effect of oxygen on micro-mechanical properties of a near-alpha titanium alloy. J. Mater. Res. 2021, 36, 2529–2544. [Google Scholar] [CrossRef]
- Texier, D.; Sirvin, Q.; Velay, V.; Salem, M.; Monceau, D.; Mazères, B.; Andrieu, E.; Roumiguier, R.; Dod, B. Oxygen/nitrogen-assisted embrittlement of titanium alloys exposed at elevated temperature. In Proceedings of the 14th World Conference on Titanium, Ti2019, Nantes, France, 10–14 June 2019. [Google Scholar]
- Regev, M.; Almoznino, B.; Spigarelli, S. A Study of the Metallurgical and Mechanical Properties of Friction-Stir-Welded Pure Titanium. Metals 2023, 13, 524. [Google Scholar] [CrossRef]
- Callegari, B.; Oliviera, J.P.; Aristizabal, K.; Coelho, R.S.; Brito, P.P.; Wu, L.; Schell, N.; Soldera, F.A.; Mucklich, F.; Pinto, H.C. In-situ synchrotron radiation study of the aging response of Ti-6Al-4V alloy with different starting microstructures. Mater. Charact. 2020, 165, 110400. [Google Scholar] [CrossRef]
- Rosen, A.; Rottem, A. The Effect of High-Temperature Exposure on the Creep Resistance of Ti-6AI-4V Alloy. Mater. Sci. Eng. 1976, 22, 23–29. [Google Scholar] [CrossRef]
- Ranganath, S.; Mishra, R.S. Steady state creep behaviour of particulate-reinforced titanium matrix composites. Acta Mater. 1996, 44, 927–935. [Google Scholar] [CrossRef]
- Barboza, M.J.R.; Perez, E.A.C.; Medeiros, M.M.; Reis, D.A.P.; Nono, M.C.A.; Piorino Neto, F.; Silva, C.R.M. Creep behavior of Ti–6Al–4V and a comparison with titanium matrix composites. Mater. Sci. Eng. A 2006, 428, 319–326. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, G.; Jiao, T.; Hu, X.; Zhang, H.; Liu, M. Creep-fatigue damage behavior of a titanium alloy at room temperature: Experiments and modeling. Int. J. Mech. Sci. 2023, 245, 108135. [Google Scholar] [CrossRef]
- Regev, M.; Santoni, A.; Spigarelli, S. Oxidation Effects on Short-Term Creep Response in Air of Commercially Pure Titanium (CP-2 Ti). Metals 2023, 13, 1275. [Google Scholar] [CrossRef]
- Hickey, C.F., Jr. Strength-Hardness Correlation for Titanium Alloys; Technical Report No. WAL TR 405.22/1; Waterton Arsenal Laboratories: Watertown, MA, USA, 1961. [Google Scholar]
- Perez, R.A.; Nakajima, H.; Dyment, F. Diffusion in α-Ti and Zr. Mater. Trans. 2003, 44, 2–13. [Google Scholar] [CrossRef]
- Shahmir, H.; Pereira, P.H.R.; Huang, Y.; Langdon, T.G. Mechanical properties and microstructural evolution of nanocrystalline titanium at elevated temperatures. Mater. Sci. Eng. A 2016, 669, 358–366. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spigarelli, S.; Regev, M.; Santoni, A.; Cabibbo, M.; Santecchia, E. Effect of Friction Stir Welding on Short-Term Creep Response of Pure Titanium. Metals 2023, 13, 1616. https://doi.org/10.3390/met13091616
Spigarelli S, Regev M, Santoni A, Cabibbo M, Santecchia E. Effect of Friction Stir Welding on Short-Term Creep Response of Pure Titanium. Metals. 2023; 13(9):1616. https://doi.org/10.3390/met13091616
Chicago/Turabian StyleSpigarelli, Stefano, Michael Regev, Alberto Santoni, Marcello Cabibbo, and Eleonora Santecchia. 2023. "Effect of Friction Stir Welding on Short-Term Creep Response of Pure Titanium" Metals 13, no. 9: 1616. https://doi.org/10.3390/met13091616
APA StyleSpigarelli, S., Regev, M., Santoni, A., Cabibbo, M., & Santecchia, E. (2023). Effect of Friction Stir Welding on Short-Term Creep Response of Pure Titanium. Metals, 13(9), 1616. https://doi.org/10.3390/met13091616