Influence of Hot Rolling on Microstructure, Corrosion and Mechanical Properties of Mg–Zn–Mn–Ca Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Tensile Test
2.4. Structural Studies
2.5. Corrosion Tests
3. Results and Discussion
3.1. Microstructure
3.2. Tensile Test
3.3. Corrosion Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vujović, S.; Desnica, J.; Stanišić, D.; Ognjanović, I.; Stevanovic, M.; Rosic, G. Applications of biodegradable magnesium-based materials in reconstructive oral and maxillofacial surgery: A review. Molecules 2022, 27, 5529. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pandey, P.M. Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy. J. Magnes. Alloys 2020, 8, 883–898. [Google Scholar] [CrossRef]
- Ahuja, N.; Grewal, N.S.; Kumar, K.; Batra, U. Investigating in-vitro degradation, fatigue behavior, and fracture toughness of electrical discharge-processed Mg alloys for biodegradable implant applications. Int. J. Lightweight Mater. Manuf. 2024, 7, 293–307. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, J.; Wu, W.; Ou, J. Functionalized Coatings on Degradable Magnesium Alloys for Orthopedic Implants: A Review. Trans. Indian Inst. Met. 2023, 76, 613–627. [Google Scholar] [CrossRef]
- Rogachev, S.O.; Bazhenov, V.E.; Komissarov, A.A.; Ten, D.V.; Li, A.V.; Andreev, V.A.; Statnik, E.S.; Sadykova, I.A.; Plegunova, S.V.; Yushchuk, V.V.; et al. High strength and ductility in a new Mg–Zn–Ga biocompatible alloy by drawing and rotary forging. Results Mater. 2024, 21, 1000524. [Google Scholar] [CrossRef]
- Rogachev, S.O.; Bazhenov, V.E.; Komissarov, A.A.; Li, A.V.; Ten, D.V.; Yushchuk, V.V.; Drobyshev, A.Y.; Shin, K.S. Effect of hot rolling on structure and mechanical properties of Mg–Y–Zn–Mn alloys. Metals 2023, 13, 223. [Google Scholar] [CrossRef]
- Nakata, T.; Xu, C.; Abe, R.; Geng, L.; Kamado, S. Unexpectedly formed strong basal texture in a rolled Mg-Zn-Ca-Mn alloy sheet. Mater. Charact. 2023, 203, 113101. [Google Scholar] [CrossRef]
- Ou, K.-L.; Chen, C.-C.; Chiu, C. Production of Oxide Dispersion Strengthened Mg-Zn-Y Alloy by Equal Channel Angular Pressing of Mechanically Alloyed Powder. Metals 2020, 10, 679. [Google Scholar] [CrossRef]
- Nakata, T.; Xu, C.; Ito, Y.; Kamado, S. Role of homogenization on tensile properties and microstructures in a dilute Mg–Zn–Ca–Mn alloy sheet. Mater. Sci. Eng. A 2022, 833, 142541. [Google Scholar] [CrossRef]
- Liu, C.; Chen, X.; Chen, J.; Atrens, A.; Pan, F. The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg-4 Zn alloy. J. Magnes. Alloys 2021, 9, 1084–1097. [Google Scholar] [CrossRef]
- Zhao, L.-Q.; Wang, C.; Chen, J.-C.; Ning, H.; Yang, Z.-Z.; Xu, J.; Wang, H.-Y. Development of weak-textured and high-performance Mg–Zn–Ca alloy sheets based on Zn content optimization. J. Alloys Compd. 2020, 849, 156640. [Google Scholar] [CrossRef]
- Nie, K.; Zhu, Z.; Munroe, P.; Deng, K.; Han, J. The effect of Zn/Ca ratio on the microstructure, texture and mechanical properties of dilute Mg–Zn–Ca–Mn alloys that exhibit superior strength. J. Mater. Sci. 2020, 55, 3588–3604. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, B.; Wang, Y.; Geng, L.; Jiao, X. Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater. Des. 2012, 34, 58–64. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef]
- Gu, X.-N.; Li, S.-S.; Li, X.-M.; Fan, Y.-B. Magnesium based degradable biomaterials: A review. Front. Mater. Sci. 2014, 8, 200–218. [Google Scholar] [CrossRef]
- Radha, R.; Sreekanth, D. Insight of magnesium alloys and composites for orthopedic implant applications—A review. J. Magnes. Alloys 2017, 5, 286–312. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Idris, M.H.; Abdul-Kadir, M.R.; Ourdjini, A.; Medraj, M.; Daroonparvar, M.; Hamzah, E. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater. Des. 2014, 53, 283–292. [Google Scholar] [CrossRef]
- Ibrahim, H. Mechanical and In Vitro Corrosion Properties of a Heat-Treated Mg-Zn-Ca-Mn Alloy as a Potential Bioresorbable Material. Adv. Metall. Mater. Eng. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Yandong, Y.; Shuzhen, K.; Teng, P.; Jie, L.; Caixia, L. Effects of Mn Addition on the Microstructure and Mechanical Properties of As-cast and Heat-Treated Mg-Zn-Ca Bio-magnesium Alloy. Metallogr. Microstruct. Anal. 2015, 4, 381–391. [Google Scholar] [CrossRef]
- She, J.; Pan, F.S.; Guo, W.; Tang, A.T.; Gao, Z.Y.; Luo, S.Q.; Song, K.; Yu, Z.W.; Rashad, M. Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy. Mater. Des. 2016, 90, 7–12. [Google Scholar] [CrossRef]
- Cho, D.H.; Lee, B.W.; Park, J.Y.; Cho, K.M.; Park, I.M. Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys. J. Alloys Compd. 2017, 695, 1166–1174. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, Y.; Wang, X.; Wang, Y.; Geng, L. Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Mater. Sci. Eng. C 2011, 31, 1667–1673. [Google Scholar] [CrossRef]
- Fazel Anvari-Yazdi, A.; Tahermanesh, K.; Hadavi, S.M.; Talaei-Khozani, T.; Razmkhah, M.; Abed, S.M.; Mohtasebi, M.S. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys. Mater. Sci. Eng. C 2016, 69, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Gopi, K.R.; Shivananda Nayaka, H.; Sahu, S. Microstructural Evolution and Strengthening of AM90 Magnesium Alloy Processed by ECAP. Arab. J. Sci. Eng. 2017, 42, 4635–4647. [Google Scholar] [CrossRef]
- Tong, L.B.; Zheng, M.Y.; Xu, S.W.; Kamado, S.; Du, Y.Z.; Hu, X.S.; Wu, K.; Gan, W.M.; Brokmeier, H.G.; Wang, G.J.; et al. Effect of Mn addition on microstructure, texture and mechanical properties of Mg–Zn–Ca alloy. Mater. Sci. Eng. A 2011, 528, 3741–3747. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, B.P.; Li, A.B.; Dong, C.C. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Mater. Lett. 2009, 63, 557–559. [Google Scholar] [CrossRef]
- Bian, D.; Zhou, W.; Deng, J.; Liu, Y.; Li, W.; Chu, X.; Xiu, P.; Cai, H.; Kou, Y.; Jiang, B.; et al. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomater. 2017, 64, 421–436. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Geng, L.; Lu, C. Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys. Mater. Sci. Eng. A 2012, 539, 56–60. [Google Scholar] [CrossRef]
- Bazhenov, V.E.; Li, A.V.; Komissarov, A.A.; Koltygin, A.V.; Tavolzhanskii, S.A.; Bautin, V.A.; Voropaeva, O.O.; Mukhametshina, A.M.; Tokar, A.A. Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn) biodegradable alloys. J. Magnes. Alloys 2021, 9, 1428–1442. [Google Scholar] [CrossRef]
- Andersson, J.O.; Helander, T.; Höglund, L.; Shi, P.F.; Sundman, B. Thermo-Calc & DICTRA, Computational tools for materials science. Calphad 2002, 26, 273–312. [Google Scholar] [CrossRef]
- Scheil, E. Bemerkungen zur Schichtkristallbildung. Zeit. Metallkunde. 1942, 34, 70–72. [Google Scholar] [CrossRef]
- Thermo-Calc software TCMG4 Magnesium Alloys Database Version 4. Available online: https://www.engineering-eye.com/THERMOCALC/details/db/pdf/thermo-calc/02/tcmg4_extended_info.pdf (accessed on 1 February 2024).
- ASTM Standard G1–03; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2011. [CrossRef]
- Bazhenov, V.; Koltygin, A.; Komissarov, A.; Anishchenko, A.; Khasenova, R.; Komissarova, J.; Bautin, V.; Seferyan, A.; Fozilov, B. Microstructure, Mechanical and Corrosion Properties of Biodegradable Mg-Ga-Zn-X (X = Ca, Y, Nd) Alloys. In Proceedings of the 27th Anniversary International Conference on Metallurgy and Materials, Brno, Czech Republic, 23–25 May 2018; TANGER Ltd.: Ostrava, Czech Republic, 2018; pp. 1375–1380. [Google Scholar]
- Kirkland, N.T.; Birbilis, N.; Staiger, M.P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.B.; Zheng, M.Y.; Cheng, L.R.; Zhang, D.P.; Kamado, S.; Meng, J.; Zhang, H.J. Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy. Mater. Charact. 2015, 104, 66–72. [Google Scholar] [CrossRef]
- Jiang, M.G.; Xu, C.; Nakata, T.; Yan, H.; Chen, R.S.; Kamado, S. Development of dilute Mg–Zn–Ca–Mn alloy with high performance via extrusion. J. Alloys Compd. 2016, 668, 13–21. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Li, X.; Zhang, J.; Fang, W.; Tan, Z. Microstructure, texture and mechanical properties of Mg-3.0Zn-0.2Ca alloys fabricated by extrusion at various temperatures. J. Alloys Compd. 2015, 652, 122–131. [Google Scholar] [CrossRef]
- Yu, H.; Tieu, A.K.; Lu, C.; Godbole, A. Investigation of closure of internal cracks during rolling by FE model considering crack surface roughness. Int. J. Adv. Manuf. Technol. 2014, 75, 1633–1640. [Google Scholar] [CrossRef]
- Krbaťa, M.; Eckert, M.; Križan, D.; Barényi, I.; Mikušová, I. Hot Deformation Process Analysis and Modelling of X153CrMoV12 Steel. Metals 2019, 9, 1125. [Google Scholar] [CrossRef]
- Eckert, M.; Krbaťa, M.; Kohutiar, M.; Kuba, M. Hot Deformation Analysis of 100MnCrW4 Tool Steel. Procedia Struct. Integr. 2023, 43, 318–323. [Google Scholar] [CrossRef]
- Kraus, T.; Fischerauer, S.F.; Hänzi, A.C.; Uggowitzer, P.J.; Löffler, J.F.; Weinberg, A.M. Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater. 2012, 8, 1230–1238. [Google Scholar] [CrossRef]
- Bahmani, A.; Arthanari, S.; Shin, K.S. Formulation of corrosion rate of magnesium alloys using microstructural parameters. J. Magnes. Alloys 2020, 8, 134–149. [Google Scholar] [CrossRef]
- Aung, N.N.; Zhou, W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 2010, 52, 589–594. [Google Scholar] [CrossRef]
- Feliu, S. Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges. Metals 2020, 10, 775. [Google Scholar] [CrossRef]
- Randviir, E.P.; Banks, C.E. Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications. Anal. Methods 2013, 5, 1098–1115. [Google Scholar] [CrossRef]
- Feliu, S.; Galvan, J.K. The application of electrochemical impedance spectroscopy to study the corrosion of magnesium alloys. In Encyclopedia of Solid-Liquid Interfaces, 1st ed.; Wandelt, K., Bussetti, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 550–564. [Google Scholar] [CrossRef]
- Nakatsugawa, I.; Martin, R.; Knystautas, E.J. Improving Corrosion Resistance of AZ91D Magnesium Alloy by Nitrogen Ion Implantation. Corrosion 1996, 52, 921–926. [Google Scholar] [CrossRef]
- Sun, M.; Yerokhin, A.; Bychkova, M.Y.; Shtansky, D.V.; Levashov, E.A.; Matthews, A. Self-Healing Plasma Electrolytic Oxidation Coatings Doped With Benzotriazole Loaded Halloysite Nanotubes on AM50 Magnesium Alloy. Corros. Sci. 2016, 111, 753–769. [Google Scholar] [CrossRef]
- Coy, A.E.; Viejo, F.; García-García, F.J.; Liu, Z.; Skeldon, P.; Thompson, G.E. Effect of Excimer Laser Surface Melting on the Microstructure and Corrosion Performance of the Die Cast AZ91 Magnesium Alloy. Corros. Sci. 2010, 52, 387–397. [Google Scholar] [CrossRef]
- Liu, H.; Cao, F.; Song, G.L.; Zheng, D.; Shi, Z.; Dargusch, M.S.; Atrens, A. Review of the Atmospheric Corrosion of Magnesium Alloys. J. Mat. Sci. Technol. 2019, 35, 2003–2016. [Google Scholar] [CrossRef]
Sample Designation | Total Percentage Reduction, % | Average Final Plate Thickness, mm |
---|---|---|
E6 | 63 | 2.60 |
E9 | 78 | 1.50 |
E12 | 88 | 0.83 |
E15 | 93 | 0.52 |
E17 | 96 | 0.30 |
E18 | 97 | 0.24 |
Sample Designation | YS, MPa | UTS, MPa | RE, % |
---|---|---|---|
Rolling temperature of 300 °C and average percentage reduction at a given pass of about 17% | |||
E6 | 227 ± 23 | 304 ± 2 | 6.0 ± 1.0 |
E9 | 297 ± 18 | 325 ± 11 | 4.0 ± 1.0 |
E9 * | - | 215 ± 21 | 0 |
E15 | 278 ± 18 | 315 ± 4 | 7.0 ± 1.0 |
E17 | 292 ± 5 | 308 ± 3 | 3.0 ± 1.5 |
E17 * | 284 ± 11 | 309 ± 3 | 2.5 ± 0.5 |
E18 | 291 ± 9 | 307 ± 2 | 5.0 ± 1.0 |
Rolling temperature of 400 °C and average percentage reduction at a given pass of about 16% | |||
E9 | 249 ± 17 | 259 ± 19 | 1.0 ± 0.5 |
E12 | 296 ± 13 | 309 ± 13 | 2.5 ± 0.5 |
E15 | 293 ± 3 | 301 ± 8 | 2.5 ± 0.5 |
E18 | 276 ± 6 | 302 ± 12 | 3.0 ± 0.5 |
E18 * | 297 ± 8 | 322 ± 11 | 3.5 ± 0.5 |
Rolling temperature of 400 °C and average percentage reduction at a given pass of about 26% | |||
E9 | 251 ± 20 | 251 ± 20 | 0 |
E15 | 264 ± 51 | 269 ± 53 | 3.0 ± 2.0 |
E18 | 299 ± 23 | 322 ± 12 | 2.3 ± 1.5 |
E18 * | 276 ± 22 | 312 ± 14 | 1.8 ± 0.8 |
Annealing Regime | YS, MPa | UTS, MPa | ER, % |
---|---|---|---|
300 °C for 15 min | 269 ± 5 | 283 ± 5 | 6.0 ± 1.0 |
400 °C for 15 min | 200 ± 1 | 261 ± 1 | 17.5 ± 0.5 |
Condition | Orientation | Ecorr vs. SHE, V | J, mA/cm2 | CR, mm/y |
---|---|---|---|---|
Rolling at 300 °C | Perpendicular to RD | −1.28 ± 0.02 | 0.107 ± 0.001 | 2.46 ± 0.01 |
Rolling at 300 °C followed by annealing at 400 °C for 15 min | Perpendicular to RD | −1.28 ± 0.01 | 0.102 ± 0.004 | 2.34 ± 0.08 |
Rolling at 300 °C | Parallel to RD | −1.32 ± 0.01 | 0.018 ± 0.005 | 0.41 ± 0.10 |
Rolling at 300 °C followed by annealing at 400 °C for 15 min | Parallel to RD | −1.27 ± 0.01 | 0.010 ± 0.004 | 0.23 ± 0.09 |
Parameters | Rolling at 300 °C | Rolling at 300 °C Followed Annealing at 400 °C for 15 min | |||
Perpendicular to RD | Parallel to RD | Perpendicular to RD | Parallel to RD | ||
R1, (Ω cm2) | 180 | 178 | 181 | 180 | |
Rct, (kΩ cm2) | 3.13 | 5.63 | 2.4 | 2.54 | |
RL, (kΩ cm2) | 3.5 | 6.56 | 2.51 | 3.95 | |
CPE1, (S Secn cm−2) | 5.33∙10−6 | 6.37∙10−6 | 2.73∙10−6 | 2.7∙10−6 | |
n1 | 0.94 | 0.861 | 0.994 | 0.997 | |
L, (H) | 5.5∙10−2 | 2.71∙10−1 | 1.47∙10−2 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogachev, S.O.; Bazhenov, V.E.; Bautin, V.A.; Li, A.V.; Plegunova, S.V.; Ten, D.V.; Yushchuk, V.V.; Komissarov, A.A.; Shin, K.S. Influence of Hot Rolling on Microstructure, Corrosion and Mechanical Properties of Mg–Zn–Mn–Ca Alloy. Metals 2024, 14, 1249. https://doi.org/10.3390/met14111249
Rogachev SO, Bazhenov VE, Bautin VA, Li AV, Plegunova SV, Ten DV, Yushchuk VV, Komissarov AA, Shin KS. Influence of Hot Rolling on Microstructure, Corrosion and Mechanical Properties of Mg–Zn–Mn–Ca Alloy. Metals. 2024; 14(11):1249. https://doi.org/10.3390/met14111249
Chicago/Turabian StyleRogachev, Stanislav O., Viacheslav E. Bazhenov, Vasiliy A. Bautin, Anna V. Li, Sofia V. Plegunova, Denis V. Ten, Viacheslav V. Yushchuk, Alexander A. Komissarov, and Kwang Seon Shin. 2024. "Influence of Hot Rolling on Microstructure, Corrosion and Mechanical Properties of Mg–Zn–Mn–Ca Alloy" Metals 14, no. 11: 1249. https://doi.org/10.3390/met14111249
APA StyleRogachev, S. O., Bazhenov, V. E., Bautin, V. A., Li, A. V., Plegunova, S. V., Ten, D. V., Yushchuk, V. V., Komissarov, A. A., & Shin, K. S. (2024). Influence of Hot Rolling on Microstructure, Corrosion and Mechanical Properties of Mg–Zn–Mn–Ca Alloy. Metals, 14(11), 1249. https://doi.org/10.3390/met14111249