Ruta graveolens Plant Extract as a Green Corrosion Inhibitor for 304 SS in 1 M HCl: Experimental and Theoretical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extract Preparation
2.3. Characterization of Ruta Graveolens Extract
2.4. Weight Loss Measurement
2.5. Electrochemical Measurements
2.6. Quantum Chemical Calculations
3. Results and Discussion
3.1. HPLC Analysis of Ruta Graveolens Extract
3.2. Weight Loss
3.3. Potentiodynamic Polarization Measurements
3.4. Electrochemical Impedance Spectroscopy
3.5. Scanning Electron Microscopy Analysis
3.6. Adsorption Isotherm
3.7. Quantum Chemical Calculations
3.7.1. Global Chemical Activity
3.7.2. Fraction of Electrons Transferred ()
4. Conclusions
- ○
- The weight loss method reveals that Ruta graveolens extract significantly decreases the corrosion rate of 304 steel, obtaining a maximum inhibition efficiency of 95.28% at 25 °C and 600 ppm extract. Conversely, as the temperature and immersion time increase, the inhibition efficiency decreases.
- ○
- At 25 °C and 600 ppm extract, the potentiodynamic polarization results revealed a 98.10% inhibition efficiency. These results also indicated that the extract acted as a mixed-type inhibitor. At the same temperature and extract concentration, the electrochemical impedance results showed that the values increased with an increasing extract concentration, and the highest inhibition efficiency reached 96.32%.
- ○
- The adsorption of the inhibitor components onto the 304 SS surface was found to follow the Langmuir isotherm model, and the inhibition of the corrosion process is governed by physical adsorption. The thermodynamic parameters derived show negative values of standard Gibbs free adsorption energies, suggesting a spontaneous adsorption process of the Ruta graveolens molecules on the surface of the 304 SS.
- ○
- SEM observations prove that 304 SS’s exposure to the 1 M HCl media (blank solution) causes considerable surface deterioration. On the contrary, a clean surface was observed with the addition of the inhibitor extract.
- ○
- The chemical characterization of the Ruta graveolens extract using HPLC showed the presence of four compounds: rutin, caffeic acid, p-coumaric acid, and apigenin. The presence of rutin molecules in the extract greatly benefits the electron donation from the HOMO of the inhibitor to the LUMO of the metal having a low ΔE value (4.02 eV).
- ○
- The present study has shown that Ruta graveolens extract, a green corrosion inhibitor for 304 stainless steel, has outstanding corrosion inhibition efficiency in an acidic medium.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laycock, N.J.; Newman, R.C. Localized dissolution kinetics, salt films, and pitting potentials. Corros. Sci. 1997, 39, 1771–1790. [Google Scholar] [CrossRef]
- Leckie, H.P.; Uhlig, H.H. Environmental Factors Affecting the Critical Potential for Pitting in 18-8 Stainless Steel. J. Electrochem. Soc. 1966, 113, 1262–1267. [Google Scholar] [CrossRef]
- Benabdellah, M.; Benkaddour, M.; Hammouti, B. Inhibition of steel corrosion in 2M H3PO4 by artemisia oil. Appl. Surf. Sci. 2006, 252, 6212–6217. [Google Scholar] [CrossRef]
- Raja, P.B.; Sethuraman, M.G. Natural products as corrosion inhibitor for metals in corrosive media. Mater. Lett. 2008, 62, 113–116. [Google Scholar] [CrossRef]
- Yilmaz, N.; Fitoz, A.; Ergun, Ü.; Emregül, K.C. A Combined Electrochemical and Theoretical Study into the Effect of 2-((thiazole-2-ylimino) methyl) phenol as a Corrosion Inhibitor for Mild Steel in a Highly Acidic Environment. Corros. Sci. 2016, 111, 110–120. [Google Scholar] [CrossRef]
- Kertit, S.; Hammouti, B. Corrosion inhibition of iron in 1M HCl by 1-phenyl-5-mercapto-1,2,3,4-tetrazole. Appl. Surf. Sci. 1996, 93, 59–66. [Google Scholar] [CrossRef]
- Sabu, A.S.; Ragi, K. Tinospora cordifolia extract as an environmentally benign green corrosion inhibitor in acid media: Electrochemical, surface morphological, quantum chemical, and statistical investigations. Mater. Today Sustain. 2021, 13, 100076. [Google Scholar] [CrossRef]
- Zuo, X.; Li, W.; Luo, W.; Zhang, X.; Qiang, Y.; Zhang, J.; Li, H.; Tan, B. Research of Lilium brownii leaves extract as a commendable and green inhibitor for X70 steel, corrosion in hydrochloric acid. J. Mol. Liq. 2021, 321, 114914. [Google Scholar] [CrossRef]
- Chapagain, A.; Acharya, D.; Das, A.K.; Chhetri, K.; Oli, H.B.; Yadav, A.P. Alkaloid of Rhynchostylis retusa as green inhibitor for mild steel corrosion in 1M H2SO4 solution. Electrochem 2022, 3, 211–224. [Google Scholar] [CrossRef]
- Zaher, A.; Aslam, R.; Lee, H.-S.; Khafouri, A.; Boufellous, M.; Alrashdi, A.A.; El aoufir, Y.; Lgaz, H.; Ouhssine, M. A com-bined computational and electrochemical exploration of the Ammi visnaga L. extract as a green corrosion inhibitor for carbon steel in HCl solution. Arab J. Chem. 2022, 15, 103573. [Google Scholar] [CrossRef]
- Tan, B.; He, J.; Zhang, S.; Xu, C.; Chen, S.; Liu, H.; Li, W. Insight into anti-corrosion nature of Betel leaves water extracts as the novel and eco-friendly inhibitors. J. Colloid. Interface Sci. 2021, 585, 287–301. [Google Scholar] [CrossRef] [PubMed]
- de Sampaio, M.T.G.; Fernandes, C.M.; de Souza, G.G.P.; Carvalho, E.S.; Velasco, J.A.C.; Silva, J.C.M.; Alves, O.C.; Ponzio, E.A. Evaluation of aqueous extract of Mandevilla fragrans leaves as environmental-friendly corrosion inhibitor for mild steel in acid medium. J. Bio-Tribo-Corros. 2021, 7, 13–24. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, J.J.; Tello-Salgado, I.; Aviles-Flores, M.; Landeros-Martínez, L.L.; los Ríos, J.P.F.-D.; Gon-zalez-Rodriguez, J.G. Green corrosion and DFT studies of Ustilago maydis extract for carbon steel in sulfuric acid. J. Mol. Struct. 2023, 1294, 136509. [Google Scholar] [CrossRef]
- Abdel-Gaber, A.M.; Ezzat, A.; Mohamed, M.E. Fenugreek seed and Cape gooseberry leaf extracts as green corrosion inhibitors for steel in the phosphoric acid industry. Sci. Rep. 2022, 12, 22251. [Google Scholar] [CrossRef]
- Haque, J.; Verma, C.; Srivastava, V.; Wan Nik, W.B. Corrosion inhibition of mild steel in 1M HCl using environ-mentally benign Thevetia peruviana flower extracts. Sustain. Chem. Pharm. 2021, 19, 100354. [Google Scholar] [CrossRef]
- Kalkhambkar, A.G.; Rajappa, S.; Manjanna, J.; Malimath, G. Saussurea obvallatta leaves extract as a potential eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Inorg. Chem. Commun. 2022, 143, 109799. [Google Scholar] [CrossRef]
- Minagalavar, R.L.; Rathod, M.R.; Rajappa, S.K.; Sajjan, A.M. Investigation of Laurus Tamala leaves extract as an environmentally acceptable corrosion inhibitor for soft steel in 1M HCl: Electrochemical, DFT, and surface characterization techniques. Indian J. Chem. Technol. 2023, 30, 492–505. [Google Scholar] [CrossRef]
- Pai, G.D.; Rathod, M.R.; Rajappa, S.K.; Kittur, A.A. Effect of tabebuia heterophylla plant leaves extract on corrosion protection of low carbon steel in 1M HCl medium: Electrochemical, quantum chemical and surface characterization studies. Results Surf. Interfaces 2024, 15, 100203. [Google Scholar] [CrossRef]
- Fouda, E.-A.; El-Hossiany, A.; Ramadan, H. Calotropis Procera plant extract as green corrosion inhibitor for 304 stainless steel in hydrochloric acid solution. Zast. Mater. 2018, 58, 541–555. [Google Scholar] [CrossRef]
- Ehsani, A.; Mahjani, M.G.; Hosseini, M.; Safari, R.; Moshrefi, R.; Shiri, H.M. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. J. Colloid Interface Sci. 2016, 490, 444–451. [Google Scholar] [CrossRef]
- Albrimi, Y.A.; Addi, A.A.; Douch, J.; Hamdani, M.; Souto, R.M. Studies on the adsorption of heptamolybdate ions on AISI 304 stainless steel from acidic HCl solution for corrosion inhibition. Int. J. Electrochem. Sci. 2016, 11, 385–397. [Google Scholar] [CrossRef]
- Fouda, A.S.; Shalabi, K.; Shohba, R.M.A. Chalcones as Environmentally-Friendly Corrosion Inhibitors for Stainless Steel Type 304 in 1 M HCl Solutions. Int. J. Electrochem. Sci. 2014, 9, 9876–9893. [Google Scholar] [CrossRef]
- Soltani, N.; Tavakkoli, N.; Kashani, M.K.; Mosavizadeh, A.; Oguzie, E.E.; Jalali, M.R. Silybum marianum extract as a natural source inhibitor for 304 stainless steel corrosion in 1.0M HCl. J. Ind. Eng. Chem. 2014, 20, 3217–3227. [Google Scholar] [CrossRef]
- Scendo, M.; Trela, J. Adenine as an effective corrosion inhibitor for stainless steel in chloride solution. Int. J. Electrochem. Sci. 2013, 8, 9201–9221. [Google Scholar] [CrossRef]
- Soltani, N.; Tavakkoli, N.; Khayatkashani, M.; Jalali, M.R.; Mosavizade, A. Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of Salvia officinalis leaves. Corros. Sci. 2012, 62, 122–135. [Google Scholar] [CrossRef]
- Asgharian, S.; Hojjati, M.R.; Ahrari, M.; Bijad, E.; Deris, F.; Lorigooini, Z. Ruta graveolens and rutin, as its major compound: Investigating their effect on spatial memory and passive avoidance memory in rats. Pharm. Biol. 2020, 58, 447–453. [Google Scholar] [CrossRef]
- Manssouri, M.; Chraka, A.; Raissouni, I.; Wahby, A. Anti-Corrosion Performance of Ruta Graveolens Essential Oil as A Green Inhibitor for Mild Steel in 1 M HCl: Evaluations of Electrochemical, DFT and Monte Carlo. Anal. Bioanal. Electrochem. 2024, 16, 507–536. [Google Scholar] [CrossRef]
- Anupama, K.K.; Shainy, K.M.; Joseph, A. Excellent Anticorrosion Behavior of Ruta Graveolens Extract (RGE) for Mild Steel in Hydrochloric Acid: Electro Analytical Studies on the Effect of Time, Temperature, and Inhibitor Concentration. J. Bio-Tribo-Corros. 2016, 2, article no. 2. [Google Scholar] [CrossRef]
- Alao, A.O.; Popoola, A.P.; Dada, M.O.; Sanni, O. Utilization of green inhibitors as a sustainable corrosion control method for steel in petrochemical industries: A review. Front. Energy Res. 2023, 10, 1063315. [Google Scholar] [CrossRef]
- Li, P.; Tanb, J.Y.L.K.L.; Leea, J.Y. Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine. Electrochim. Acta 1997, 42, 605–615. [Google Scholar] [CrossRef]
- ASTM G3-14(2019); Standard Practice for Conventions Applicable to Electrochemical Measurements. ASTM International: West Conshohocken, PA, USA, 2019.
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Densityfunctional thermochemistry IV. A new dynamical correlation functional and implications for exact-exchange mixing functional and implications for exact-exchange mixing. J. Chem. Phys. 1996, 104, 1040–1046. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2014, 123, 154101. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functions. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Alvarez, P.E.; Fiori-Bimbi, M.V.; Neske, A.; Brandán, S.A.; Gervasi, C.A. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. J. Ind. Eng. Chem. 2018, 58, 92–99. [Google Scholar] [CrossRef]
- Abdallah, M. Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution. Corros. Sci. 2002, 44, 717–728. [Google Scholar] [CrossRef]
- Kowsari, E.; Arman, S.; Shahini, M.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution. Corros. Sci. 2016, 112, 73–85. [Google Scholar] [CrossRef]
- Joseph, A.; Joseph, A. Surface Interaction and Corrosion Inhibition of Mild Steel in Hydrochloric Acid Using Pyoverdine, an Eco-Friendly Bio-molecule. J. Bio-Tribo-Corros. 2016, 2, 20. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Sharma, P.; Guo, L.; Dagdag, O.; Kumar, V. Molecular dynamic simulation, quantum chemical calculation and friendly corrosion inhibitor for stainless steel (SS-410) in acidic medium. J. Mol. Liq. 2022, 346, 118237. [Google Scholar] [CrossRef]
- Behpour, M.; Ghoreishi, S.M.; Soltani, N. The inhibitive effect of some bis-N, S-bidentate Schiff bases on corrosion behavior of 304 stainless steel in hydrochloric acid solution. Corros. Sci. 2009, 51, 1073–1082. [Google Scholar] [CrossRef]
- Hussin, M.H.; Abdul, A.; Nasir, M.; Ibrahim, M.; Brosse, N. The capability of ultrafiltrated alkaline and organosolv oil palm (Elaeis guineensis) fronds lignin as green corrosion inhibitor for mild steel in 0.5 M HCl solution. Measurement 2016, 78, 90–103. [Google Scholar] [CrossRef]
- Gapsari, F.; Soenoko, R.; Suprapto, A.; Suprapto, W. Bee Wax Propolis Extract as Eco-Friendly Corrosion Inhibitors for 304SS in Sulfuric Acid. Int. J. Corros. 2015, 2015, 567202. [Google Scholar] [CrossRef]
- Gapsari, F.; Madurani, K.A.; Simanjuntak, F.M. Corrosion Inhibition of Honeycomb Waste Extracts for 304 Stainless Steel in Sulfuric Acid Solution. Materials 2019, 12, 2120. [Google Scholar] [CrossRef]
- Tu, B. Quantum chemical study of thiaozole derivatives as corrosion inhibitors based on density functional theory. Arab. J. Chem. 2021, 14, 102927. [Google Scholar] [CrossRef]
- Kokalj, A. On the alleged importance of the molecular electron-donating ability and the HOMO-LUMO gap in corrosion inhibition studies. Corros. Sci. 2020, 180, 109016. [Google Scholar] [CrossRef]
- Kaya, S.; Burak, T.; Kaya, C.; Obot, I.B. Determination of corrosion inhibition effects of amino acids: Quantum chemical and molecular dynamic simulation study. J. Taiwan Inst. Chem. Eng. 2015, 58, 528–535. [Google Scholar] [CrossRef]
- Bhawsar, J.; Jain, P.; Rani, M. Quantum Chemical Assessment of Two Natural Compounds: Vasicine and Vasicinone as Green Corrosion Inhibitors. Int. J. Electrochem. Sci. 2018, 13, 3200–3209. [Google Scholar] [CrossRef]
- Ammouchi, N.; Allal, H.; Belhocine, Y.; Bettaz, S.; Zouaoui, E. DFT computations, and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum. J. Mol. Liq. 2020, 300, 112309. [Google Scholar] [CrossRef]
C | Cr | Ni | Mn | Si | P | S | Fe |
---|---|---|---|---|---|---|---|
0.07 | 18.18 | 8.48 | 2.01 | 0.75 | 0.045 | 0.03 | Bal. |
Temperature (°C) | Time (h) | Concentration (ppm) | Weight Loss (mg cm−2) | Standard Deviation | Corrosion Rate (mm/y) | θ | IE% |
---|---|---|---|---|---|---|---|
25 | 2 | Blank | 0.1568 | 0.00356 | 13.9870 | - | - |
150 | 0.0148 | 0.00277 | 1.3570 | 0.91 | 91.14 | ||
300 | 0.0119 | 0.00148 | 1.0946 | 0.92 | 92.34 | ||
450 | 0.0072 | 0.00019 | 0.6639 | 0.95 | 95.22 | ||
600 | 0.0072 | 0.00048 | 0.6570 | 0.95 | 95.28 | ||
4 | Blank | 0.2446 | 0.00114 | 11.1122 | - | - | |
150 | 0.0224 | 0.00046 | 1.0225 | 0.91 | 91.22 | ||
300 | 0.0203 | 0.00677 | 0.9287 | 0.92 | 92.14 | ||
450 | 0.0199 | 0.00570 | 0.9121 | 0.92 | 92.35 | ||
600 | 0.0140 | 0.00690 | 0.6409 | 0.94 | 94.58 | ||
6 | Blank | 0.2857 | 0.00155 | 8.6925 | - | - | |
150 | 0.0380 | 0.000747 | 1.1578 | 0.86 | 86.02 | ||
300 | 0.0361 | 0.000418 | 1.0994 | 0.87 | 87.13 | ||
450 | 0.0277 | 0.000263 | 0.8445 | 0.9 | 90.05 | ||
600 | 0.0223 | 0.00982 | 0.6812 | 0.92 | 92.12 | ||
8 | Blank | 0.3729 | 0.00801 | 8.5089 | - | - | |
150 | 0.0578 | 0.00289 | 1.31928 | 0.8 | 80.15 | ||
300 | 0.0428 | 0.00940 | 0.9774 | 0.85 | 85.87 | ||
450 | 0.0431 | 0.00401 | 0.9843 | 0.85 | 85.41 | ||
600 | 0.0309 | 0.00358 | 0.7062 | 0.89 | 89.32 | ||
40 | 2 | Blank | 0.2296 | 0.00238 | 20.9755 | - | - |
150 | 0.0723 | 0.00427 | 6.6006 | 0.69 | 69.65 | ||
300 | 0.0686 | 0.00360 | 6.2629 | 0.7 | 70.02 | ||
450 | 0.0506 | 0.00947 | 4.6174 | 0.78 | 78.41 | ||
600 | 0.0390 | 0.00130 | 3.5609 | 0.83 | 83.83 | ||
4 | Blank | 0.2440 | 0.00233 | 15.8622 | - | - | |
150 | 0.0793 | 0.00224 | 3.6182 | 0.68 | 68.05 | ||
300 | 0.0730 | 0.00217 | 3.3349 | 0.7 | 70.01 | ||
450 | 0.0566 | 0.00932 | 2.5866 | 0.77 | 77.14 | ||
600 | 0.0521 | 0.00837 | 2.3784 | 0.79 | 79.05 | ||
6 | Blank | 0.3421 | 0.00155 | 10.5748 | - | - | |
150 | 0.1097 | 0.00536 | 3.3370 | 0.68 | 68.02 | ||
300 | 0.1035 | 0.00228 | 3.1496 | 0.7 | 70.12 | ||
450 | 0.0848 | 0.00146 | 2.5817 | 0.75 | 75.41 | ||
600 | 0.0840 | 0.00159 | 2.5574 | 0.75 | 75.05 | ||
8 | Blank | 0.4421 | 0.00111 | 9.9538 | - | - | |
150 | 0.1734 | 0.00867 | 3.9578 | 0.6 | 60.12 | ||
300 | 0.1571 | 0.00246 | 3.5839 | 0.64 | 64.48 | ||
450 | 0.1453 | 0.00510 | 3.3153 | 0.67 | 67.41 | ||
600 | 0.1436 | 0.00563 | 3.2765 | 0.68 | 68.22 | ||
60 | 2 | Blank | 0.2839 | 0.00667 | 25.9144 | - | - |
150 | 0.0869 | 0.00067 | 0.7877 | 0.69 | 69.63 | ||
300 | 0.0883 | 0.00387 | 0.8009 | 0.69 | 69.72 | ||
450 | 0.0713 | 0.00317 | 0.64633 | 0.75 | 75.15 | ||
600 | 0.0561 | 0.00896 | 0.5084 | 0.8 | 80.21 | ||
4 | Blank | 0.3337 | 0.00125 | 15.2289 | - | - | |
150 | 0.1118 | 0.00478 | 5.1042 | 0.67 | 67.12 | ||
300 | 0.1103 | 0.00312 | 5.0334 | 0.67 | 67.81 | ||
450 | 0.0962 | 0.00487 | 4.3894 | 0.71 | 71.11 | ||
600 | 0.0758 | 0.00383 | 3.4611 | 0.77 | 77.41 | ||
6 | Blank | 0.4142 | 0.00024 | 12.6012 | - | - | |
150 | 0.1502 | 0.00936 | 4.5703 | 0.64 | 64.01 | ||
300 | 0.1365 | 0.00197 | 4.1533 | 0.67 | 67.47 | ||
450 | 0.1266 | 0.00169 | 3.8527 | 0.69 | 69.61 | ||
600 | 0.1172 | 0.00698 | 3.5662 | 0.72 | 72.52 | ||
8 | Blank | 0.5413 | 0.00155 | 12.3486 | - | - | |
150 | 0.2267 | 0.00611 | 5.1732 | 0.58 | 58.87 | ||
300 | 0.2104 | 0.00284 | 4.7998 | 0.61 | 61.09 | ||
450 | 0.1897 | 0.00752 | 4.3289 | 0.65 | 65.15 | ||
600 | 0.1802 | 0.00853 | 4.1125 | 0.67 | 67.25 |
Temperature (°C) | (ppm) | (−mV) | (mV) | (mV) | mA/cm2 | (mm/y) | IE% |
---|---|---|---|---|---|---|---|
25 | Blank | 319.3 | 58.5 | 128.9 | 0.1302 | 1.595 | - |
150 | 304.6 | 33.3 | 120.8 | 0.0081 | 0.099 | 94.11 | |
300 | 324.7 | 46.6 | 111.8 | 0.0079 | 0.096 | 94.28 | |
450 | 322.7 | 41.5 | 106.7 | 0.0042 | 0.052 | 97.45 | |
600 | 329 | 35.2 | 105.7 | 0.00302 | 0.037 | 98.10 | |
40 | Blank | 299.6 | 49.1 | 133.6 | 0.1966 | 2.4083 | - |
150 | 317.5 | 48.4 | 119.3 | 0.0284 | 0.3485 | 84.46 | |
300 | 306.07 | 47.6 | 120.8 | 0.0178 | 0.2185 | 91.87 | |
450 | 315.9 | 42.4 | 109.7 | 0.0142 | 0.1743 | 92.67 | |
600 | 318.5 | 42.5 | 98.1 | 0.0068 | 0.0831 | 96.65 | |
60 | Blank | 317.3 | 70.2 | 145.8 | 0.3776 | 4.6261 | - |
150 | 320 | 45.3 | 149.9 | 0.0768 | 0.9418 | 82.21 | |
300 | 319.6 | 44.9 | 140.9 | 0.0657 | 0.8057 | 85.56 | |
450 | 319.4 | 42.2 | 137.8 | 0.0588 | 0.7214 | 86.78 | |
600 | 319.1 | 32.6 | 131.7 | 0.0439 | 0.5383 | 90.18 |
Temperature (°C) | Concentration | Rs (Ωcm2) | Rct (Ωcm2) | Cdl (μF/cm2) | IE% | Χ2 |
---|---|---|---|---|---|---|
25 | Blank | 2.01 | 115.2 | 730.0 | - | 0.00143 |
150 | 3.16 | 1446.5 | 537.0 | 92.84 | 0.00147 | |
300 | 3.40 | 1503.6 | 129.0 | 92.48 | 0.00115 | |
450 | 3.99 | 2012.9 | 108.0 | 94.27 | 0.000498 | |
600 | 5.59 | 2635.2 | 59.8 | 96.32 | 0.000696 | |
40 | Blank | 0.96 | 85.97 | 391.0 | - | 0.00553 |
150 | 1.93 | 429.3 | 142.2 | 80.35 | 0.00647 | |
300 | 3.33 | 656.1 | 140.0 | 87.26 | 0.00218 | |
450 | 4.23 | 671.9 | 117.3 | 87.52 | 0.00643 | |
600 | 3.92 | 982.4 | 106.5 | 91.20 | 0.000477 | |
60 | Blank | 1.24 | 37.7 | 430.0 | - | 0.00149 |
150 | 1.50 | 204.2 | 100.4 | 81.25 | 0.00188 | |
300 | 1.94 | 207.7 | 98.6 | 82.47 | 0.00533 | |
450 | 1.76 | 209.5 | 80.4 | 82.36 | 0.00225 | |
600 | 1.82 | 217.1 | 76.5 | 83.29 | 0.000951 |
Temperature °C | Slope | R2 | Kads (KJ/mol) | ΔGads (KJ/mol) |
---|---|---|---|---|
25 | 1.0257 | 0.9994 | 73.5 | −20.6 |
40 | 1.0586 | 0.9987 | 33 | −18.6 |
60 | 1.1974 | 0.9999 | 149 | −22.4 |
Compound | EHOMO | ELUMO | ΔE | I | EA | χ | η |
---|---|---|---|---|---|---|---|
Rutin | −6.06 | −2.04 | 4.02 | 6.03 | 2.10 | 4.16 | 1.97 |
Caffeic acid | −6.04 | −2.01 | 4.04 | 6.04 | 2.04 | 4.05 | 2.00 |
p-Coumaric acid | −6.22 | −1.99 | 4.23 | 6.20 | 2.04 | 4.13 | 2.08 |
Apigenin | −6.22 | −2.09 | 4.14 | 6.16 | 2.16 | 4.07 | 4.00 |
Molecule | ΔNFe | ΔNCr | ΔNNi |
---|---|---|---|
Rutin | 0.746 | 0.039 | 0.033 |
Caffeic acid | 0.737 | 0.032 | 0.032 |
p-Coumaric acid | 0.690 | 0.034 | 0.026 |
Apigenin | 0.355 | 0.031 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Sánchez, S.E.; Flores-De los Rios, J.P.; Monreal-Romero, H.A.; Flores-Holguin, N.R.; Rodríguez-Valdez, L.M.; Sánchez-Carrillo, M.; Delgado, A.D.; Chacón-Nava, J.G. Ruta graveolens Plant Extract as a Green Corrosion Inhibitor for 304 SS in 1 M HCl: Experimental and Theoretical Studies. Metals 2024, 14, 1267. https://doi.org/10.3390/met14111267
Hernández-Sánchez SE, Flores-De los Rios JP, Monreal-Romero HA, Flores-Holguin NR, Rodríguez-Valdez LM, Sánchez-Carrillo M, Delgado AD, Chacón-Nava JG. Ruta graveolens Plant Extract as a Green Corrosion Inhibitor for 304 SS in 1 M HCl: Experimental and Theoretical Studies. Metals. 2024; 14(11):1267. https://doi.org/10.3390/met14111267
Chicago/Turabian StyleHernández-Sánchez, Sonia Estefanía, Juan Pablo Flores-De los Rios, Humberto Alejandro Monreal-Romero, Norma Rosario Flores-Holguin, Luz María Rodríguez-Valdez, Mario Sánchez-Carrillo, Anabel D. Delgado, and Jose G. Chacón-Nava. 2024. "Ruta graveolens Plant Extract as a Green Corrosion Inhibitor for 304 SS in 1 M HCl: Experimental and Theoretical Studies" Metals 14, no. 11: 1267. https://doi.org/10.3390/met14111267
APA StyleHernández-Sánchez, S. E., Flores-De los Rios, J. P., Monreal-Romero, H. A., Flores-Holguin, N. R., Rodríguez-Valdez, L. M., Sánchez-Carrillo, M., Delgado, A. D., & Chacón-Nava, J. G. (2024). Ruta graveolens Plant Extract as a Green Corrosion Inhibitor for 304 SS in 1 M HCl: Experimental and Theoretical Studies. Metals, 14(11), 1267. https://doi.org/10.3390/met14111267