High-Temperature Mechanical Properties and Microstructure of Ultrathin 3003mod Aluminum Alloy Fins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Preparation
2.2. Test Methods
2.2.1. Tensile Test
2.2.2. Sagging Test
2.2.3. Microstructure Analysis
3. Results
3.1. High-Temperature Mechanical Properties of Ultrathin Aluminum Alloy Fins
3.2. Sagging Properties of Ultrathin Aluminum Alloy Fins
3.3. Microstructure of Cast 3003 and 3003mod Aluminum Alloys
3.4. Microstructure of Ultrathin Aluminum Alloy Fins
3.4.1. Metallographic Microstructure at Various Temperatures
3.4.2. SEM Microstructure at Different Temperatures
3.4.3. TEM Microstructure at Different Temperatures
4. Discussion
4.1. The Influence of Alloying on the Mechanical Properties of Aluminum Alloy Fins
4.2. The Influence of Alloying on the Elongation of Aluminum Alloy Fins
5. Conclusions
- (1)
- The tensile strength and yield strength of the 3003mod aluminum alloy fins modified with Si, Fe, Zr and Zn elements were both 5 to 10 MPa higher than those of the 3003 aluminum alloy at the same temperature, while the sagging values were lower than those seen for the 3003 aluminum alloy at the same temperature in the range of room temperature to 500 °C. This result is of great significance to further reducing the thickness of the fins and thus achieving lightweight heat exchangers;
- (2)
- Many α-Al (Mn,Fe) Si and Al3Zr nano-scale particles were formed, and the number of coarse Al6(Mn,Fe) particles was significantly reduced, in the 3003mod aluminum alloy by changing the proportion and distribution of Mn, Fe and Si in the particles compared to the 3003 aluminum alloy;
- (3)
- High-stability nanoparticles effectively prevented recovery and grain boundary migration during the tensile process at temperatures below 400 °C, while the reduction in the number of coarse particles decreased the number of recrystallization nucleation cores, which synergistically led to stronger high-temperature mechanical properties, better sagging resistance, and the greater elongation of the 3003mod aluminum alloy;
- (4)
- The nanoparticles in the 3003mod aluminum alloy were coarsened significantly at 500 °C, and the grains were completely recrystallized and coarsened, resulting in a significant decrease in strength, sagging resistance and elongation compared with these properties at 400 °C.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, H. Development of an aluminum brazing sheet product with barrier layer for high-performance automotive heat exchangers. Metall. Mater. Trans. A 2021, 52, 1409–1426. [Google Scholar] [CrossRef]
- Moema, J.S.; Siyasiya, C.W.; Morudu, V.K.; Buthelezi, T. The effect of soaking time on mechanical properties of roll-bonded AA3003 and AA4045 used for heat exchangers. Metals 2023, 13, 1636. [Google Scholar] [CrossRef]
- Zhang, J.X.; Sun, H.Y.; Du, P.; Liu, W.C. Effect of processing method on the recrystallization behavior of cold-rolled AA3003 aluminum alloy. J. Mater. Eng. Perform. 2020, 29, 4286–4294. [Google Scholar] [CrossRef]
- Broer, J.; Mallow, S.; Oldenburg, K.; Milkereit, B.; Kessler, O. The influence of homogenisation parameters on the microstructure and hardness of AlMnFeMgSi(Zr) wrought alloys. Metals 2023, 13, 1706. [Google Scholar] [CrossRef]
- Qin, J.N.; Kang, S.B.; Cho, J.H. Sagging mechanisms in the brazing of aluminum heat exchangers. Scr. Mater. 2013, 68, 941–944. [Google Scholar] [CrossRef]
- Liu, C.W.; Xue, X.L.; Chen, X.; Li, L.; Xia, C.D.; Zhong, Z.J.; Zhou, D.J. Effect of microstructural evolution on sagging behavior of cold-rolled aluminum foil during the brazing thermal cycle. J. Mater. Eng. Perform. 2017, 26, 5563–5570. [Google Scholar] [CrossRef]
- Tang, C.L.; Xu, Q.P.; Guo, X.F.; Chen, X.; Liu, C.W.; Li, L.; Zhou, D.J. Sagging mechanisms of three-layer aluminum clad foils used in the heat exchanger in the brazing process. J. Mater. Eng. Perform. 2018, 27, 4846–4854. [Google Scholar] [CrossRef]
- Li, H.; Lu, G.X.; Xu, C.; Guan, S.K. Microstructural evolution and sagging behavior of cold-rolled Al-1.3Mn-1.5Zn-xZr core sheet for brazing. J. Alloys Compd. 2022, 891, 161927. [Google Scholar] [CrossRef]
- Kang, M.L.; Zhou, L.; Deng, Y.L.; Lei, J.Q. Effects of annealing and deformation on sagging resistance of a hot-rolled, four-layered al alloy clad sheet. Adv. Mater. Sci. Eng. 2021, 2021, 6625548. [Google Scholar] [CrossRef]
- Vlach, M.; Stulikova, I.; Smola, B.; Piesova, J.; Cisarova, H.; Danis, S.; Plasek, J.; Gemma, R.; Tanprayoon, D.; Neubert, V. Effect of cold rolling on precipitation processes in Al-Mn-Sc-Zr alloy. Mater. Sci. Eng. A 2012, 548, 27–32. [Google Scholar] [CrossRef]
- Pan, S.W.; Qian, F.; Li, C.N.; Wang, Z.D.; Li, Y.J. Synergistic strengthening by nano-sized alpha-Al(Mn,Fe)Si and Al3Zr dispersoids in a heat-resistant Al-Mn-Fe-Si-Zr alloy. Mater. Sci. Eng. A 2021, 819, 141460. [Google Scholar] [CrossRef]
- Shimosaka, D.; Ueno, M. Effects of Si and Zr addition on strength and recrystallization behavior of Al-Mn alloy fin stocks for automotive heat exchanger. MATEC Web Conf. 2020, 326, 05006. [Google Scholar] [CrossRef]
- Qian, F.; Jin, S.B.; Wan, D.; Li, W.Z.; Cheng, X.W.; Sha, G.; Li, Y.J. Synergistic effects of Cd, Si and Cr additions on precipitation strengthening and thermal stability of dispersoids in AA3003 alloy. Mater. Sci. Eng. A 2022, 832, 142422. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, X.; Wei, G.; Fang, X.; Zhong, Z.; Song, K.; Han, J.; Jiang, Z. Influence of Zn content on microstructures, mechanical properties and stress corrosion behavior of AA5083 aluminum alloy. Acta Metall. Sin. 2020, 33, 1369–1378. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Effect of alloying elements on thermal conductivity of aluminum. J. Mater. Res. 2023, 38, 2049–2058. [Google Scholar] [CrossRef]
- Jung, S.S.; Hwang, S.B.; Kim, B.J.; Park, Y.H.; Lee, Y.C. Effect of Zn additions on the mechanical properties of high strength Al–Si–Mg–Cu alloys. In Light Metals 2020; Tomsett, A., Ed.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Shen, G.; Chen, X.; Yan, J.; Fan, L.; Yang, Z.; Zhang, J.; Guan, R. A review of progress in the study of Al-Mg-Zn(-Cu) wrought alloys. Metals 2023, 13, 345. [Google Scholar] [CrossRef]
- Davis, J.R. Aluminum and Aluminum Alloys, ASM Specialty Handbook; ASM International: Geauga, OH, USA, 1993; pp. 8–695. [Google Scholar]
- Meijers, S.D. Corrosion of Aluminum Brazing Sheet. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2002. [Google Scholar]
- Li, Q.; Li, M.; Lu, G.; Guan, S.; Zhang, E.; Xu, C. Effect of trace elements on the crystallization temperature interval and properties of 5xxx series aluminum alloys. Metals 2020, 10, 483. [Google Scholar] [CrossRef]
- ISO 6892-2:2018; Metallic Materials Tensile Testing. Part 2: Method of Test at Elevated Temperature. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/72571.html (accessed on 15 June 2022).
- Xia, C.D.; Deng, S.H.; Ni, C.Y.; Ji, Y.Y.; Zheng, W.H.; Luo, J.Q.; Xu, W.; Li, W.D.; Pang, Y. Study on laminar structure and process on high strength brazed aluminum alloy for heat exchangers. Vacuum 2023, 215, 112303. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoon, J.S.; Kim, M.S.; Jung, D. Effects of cold rolling parameters on sagging behavior for three layer Al-Si/Al-Mn(Zn)/Al-Si brazing sheets. Met. Mater. Int. 2002, 8, 227–232. [Google Scholar] [CrossRef]
- Yoon, J.S.; Lee, S.H.; Kim, M.S. Sagging resistance of cold rolled aluminum 4343/3N03/4343 clad sheet. J. Mater. Sci. Lett. 2001, 20, 229–232. [Google Scholar] [CrossRef]
- Zheng, Z.Q. Fundamentals of Materials Science, 2nd ed.; Central South University Press: Changsha, China, 2005; pp. 328–385. [Google Scholar]
- Qian, F.; Jin, S.B.; Sha, G.; Li, Y.J. Enhanced dispersoid precipitation and dispersion strengthening in an Al alloy by microalloying with Cd. Acta Mater. 2018, 157, 114–125. [Google Scholar] [CrossRef]
- Li, Y.J.; Muggerud, A.M.F.; Olsen, A.; Furu, T. Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater. 2012, 60, 1004–1014. [Google Scholar] [CrossRef]
- Li, Y.J.; Arnberg, L. Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization. Mater. Sci. Eng. A 2003, 347, 130–135. [Google Scholar] [CrossRef]
- Hansen, V.; Gjonnes, J.; Andersson, B. Quasicrystals as part of the precipitation sequence in an industrially cast aluminium alloy. J. Mater. Sci. Lett. 1989, 8, 823–826. [Google Scholar] [CrossRef]
- Riddle, Y.W.; Hallem, H.; Ryum, N. Highly recrystallization resistant Al-Mn-Mg alloys using Sc and Zr. Mater. Sci. Forum 2002, 396–402, 563–568. [Google Scholar] [CrossRef]
- Li, Y.J.; Arnberg, L. Precipitation of dispersoids in DC-cast 3003 alloy. Mater. Sci. Forum 2002, 396–402, 875–880. [Google Scholar] [CrossRef]
- Karlík, M.; Mánik, T.; Slámová, M.; Lauschmann, H. Effect of Si and Fe on the Recrystallization Response of Al-Mn Alloys with Zr Addition. Acta Phys. Pol. A 2012, 122, 469–474. [Google Scholar] [CrossRef]
Alloy | Si | Fe | Mn | Zn | Ti | Zr | Al |
---|---|---|---|---|---|---|---|
3003 | 0.15 | 0.5 | 1.5 | 0.05 | 0.025 | / | Balance |
3003mod | 0.55 | 0.2 | 1.5 | 1.5 | 0.025 | 0.15 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Ni, C.; Xia, C.; Deng, S.; Jiang, X.; Xu, W. High-Temperature Mechanical Properties and Microstructure of Ultrathin 3003mod Aluminum Alloy Fins. Metals 2024, 14, 142. https://doi.org/10.3390/met14020142
Zheng W, Ni C, Xia C, Deng S, Jiang X, Xu W. High-Temperature Mechanical Properties and Microstructure of Ultrathin 3003mod Aluminum Alloy Fins. Metals. 2024; 14(2):142. https://doi.org/10.3390/met14020142
Chicago/Turabian StyleZheng, Wenhui, Chengyuan Ni, Chengdong Xia, Shaohui Deng, Xiaoying Jiang, and Wei Xu. 2024. "High-Temperature Mechanical Properties and Microstructure of Ultrathin 3003mod Aluminum Alloy Fins" Metals 14, no. 2: 142. https://doi.org/10.3390/met14020142
APA StyleZheng, W., Ni, C., Xia, C., Deng, S., Jiang, X., & Xu, W. (2024). High-Temperature Mechanical Properties and Microstructure of Ultrathin 3003mod Aluminum Alloy Fins. Metals, 14(2), 142. https://doi.org/10.3390/met14020142